Exploring the effect of Clostridium butyricum on lung injury associated with acute pancreatitis in mice by combined 16S rRNA and metabolomics analysis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-16 DOI:10.1016/j.anaerobe.2024.102854
Jiaxin Liu , Biyan Wen , Yaoxing Huang , Guiqing Deng , Qingqing Yan , Lin Jia
{"title":"Exploring the effect of Clostridium butyricum on lung injury associated with acute pancreatitis in mice by combined 16S rRNA and metabolomics analysis","authors":"Jiaxin Liu ,&nbsp;Biyan Wen ,&nbsp;Yaoxing Huang ,&nbsp;Guiqing Deng ,&nbsp;Qingqing Yan ,&nbsp;Lin Jia","doi":"10.1016/j.anaerobe.2024.102854","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that <em>Clostridium butyricum</em> may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways.</p></div><div><h3>Methods</h3><p>An AP disease model was established in mice and treated with <em>C. butyricum.</em> The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin–eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1β, and MCP-1.</p></div><div><h3>Results</h3><p><em>C. butyricum</em> ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of <em>Erysipelatoclostridium</em> and <em>Akkermansia</em>. In addition, <em>C. butyricum</em> treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice.</p></div><div><h3>Conclusions</h3><p><em>C. butyricum</em> may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1075996424000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that Clostridium butyricum may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways.

Methods

An AP disease model was established in mice and treated with C. butyricum. The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin–eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1β, and MCP-1.

Results

C. butyricum ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of Erysipelatoclostridium and Akkermansia. In addition, C. butyricum treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice.

Conclusions

C. butyricum may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 16S rRNA 和代谢组学联合分析探讨丁酸梭菌对小鼠急性胰腺炎相关肺损伤的影响
目的急性肺损伤是重症急性胰腺炎(SAP)的一个重要并发症。肠道微生物群及其代谢产物在急性胰腺炎的发展过程中起着重要作用,并可能为急性胰腺炎相关肺损伤提供新的靶点。基于逆转 AP 损伤的能力,我们提出丁酸梭菌可通过调节肠道微生物群和相关代谢途径来降低 AP 相关肺损伤的可能性。通过 16 S rRNA 基因测序分析了小鼠粪便中肠道微生物群的结构和组成。非靶向代谢物分析用于量化微生物群衍生物。用苏木精-伊红染色法检查了小鼠胰腺和肺组织的组织病理学。结果丁酸菌可改善 AP 合并肺损伤模型中微生物群多样性的失调,并通过降低甘油三酯水平影响脂肪酸代谢,而甘油三酯水平的降低与 Erysipelatoclostridium 和 Akkermansia 相对丰度的改变密切相关。结论丁酸菌可通过干扰相关肠道微生物群和调节相关代谢途径来减轻与 AP 相关的肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1