{"title":"Emergence of enhanced photocatalytic response in GO-hBN nanocomposites with tuned non-linear optical and surface electronic properties","authors":"Vidyotma Yadav , Manoj Kumar Kumawat , Shivam Tiwari , Arun Kumar Singh , Tanuja Mohanty","doi":"10.1016/j.flatc.2024.100659","DOIUrl":null,"url":null,"abstract":"<div><p>The hexagonal Boron Nitride (hBN) nanostructures with tuned physicochemical properties find huge applications in optoelectronic devices<em>.</em> Herein, we have synthesized nanocomposite of hBN with graphene oxide (GO) in various ratios to acquire composition-dependent variation in their structural, surface electronic, linear, and non-linear optical properties. The insertion of GO in hBN nanosheets has modified their strain landscape, the electronic charge transfers from GO to hBN, increased the working time of free charge carriers, and suppressed electron-hole recombination, thus modifying its work function (WF). GO-hBN nanocomposites observed to have reduced bandgap where creation of defect induced mid-gap states lead to enhancement in non-linear absorption of two photons. Herein, we have established a linear relationship between Urbach energy (<em>E<sub>u</sub></em>), a measure of disorders and non-linear absorption coefficient (<em>α<sub>NL</sub></em>). Additionally, we have observed that the tuned bandgap of the nanocomposites has significantly enhanced their performance as high-performance photocatalysts for the degradation of methyl orange, compared to bare hBN or GO. As a result, we discovered that <em>E<sub>u</sub></em>, <em>α<sub>NL</sub></em>, WF and photodegradation activity of GO-hBN nanocomposites exhibit analogous variations in response to changes in the content of GO. Thus, by strategically prioritizing the modification of a single parameter while considering the potential effects on other relevant properties for application purpose, GO-hBN can effectively harness large spectrum areas for catalytic and optoelectronic applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100659"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000539","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The hexagonal Boron Nitride (hBN) nanostructures with tuned physicochemical properties find huge applications in optoelectronic devices. Herein, we have synthesized nanocomposite of hBN with graphene oxide (GO) in various ratios to acquire composition-dependent variation in their structural, surface electronic, linear, and non-linear optical properties. The insertion of GO in hBN nanosheets has modified their strain landscape, the electronic charge transfers from GO to hBN, increased the working time of free charge carriers, and suppressed electron-hole recombination, thus modifying its work function (WF). GO-hBN nanocomposites observed to have reduced bandgap where creation of defect induced mid-gap states lead to enhancement in non-linear absorption of two photons. Herein, we have established a linear relationship between Urbach energy (Eu), a measure of disorders and non-linear absorption coefficient (αNL). Additionally, we have observed that the tuned bandgap of the nanocomposites has significantly enhanced their performance as high-performance photocatalysts for the degradation of methyl orange, compared to bare hBN or GO. As a result, we discovered that Eu, αNL, WF and photodegradation activity of GO-hBN nanocomposites exhibit analogous variations in response to changes in the content of GO. Thus, by strategically prioritizing the modification of a single parameter while considering the potential effects on other relevant properties for application purpose, GO-hBN can effectively harness large spectrum areas for catalytic and optoelectronic applications.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)