A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Statistical Planning and Inference Pub Date : 2024-04-15 DOI:10.1016/j.jspi.2024.106184
Sho Sonoda , Isao Ishikawa , Masahiro Ikeda
{"title":"A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks","authors":"Sho Sonoda ,&nbsp;Isao Ishikawa ,&nbsp;Masahiro Ikeda","doi":"10.1016/j.jspi.2024.106184","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function <span><math><mi>f</mi></math></span> to the parameter distribution <span><math><mi>γ</mi></math></span> so that a network <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></mrow></math></span> reproduces <span><math><mi>f</mi></math></span>, i.e. <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span>. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, group convolutional networks on abstract Hilbert space <span><math><mi>H</mi></math></span>, fully-connected networks on noncompact symmetric spaces <span><math><mrow><mi>G</mi><mo>/</mo><mi>K</mi></mrow></math></span>, and pooling layers, or the <span><math><mi>d</mi></math></span>-plane ridgelet transform.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106184"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000417/pdfft?md5=98e3c89ff86925f67f13c56d174f0109&pid=1-s2.0-S0378375824000417-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000417","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function f to the parameter distribution γ so that a network NN[γ] reproduces f, i.e. NN[γ]=f. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields Fp, group convolutional networks on abstract Hilbert space H, fully-connected networks on noncompact symmetric spaces G/K, and pooling layers, or the d-plane ridgelet transform.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为各种深度-2 神经网络推导小岭变换的统一傅立叶切片法
要研究神经网络参数,研究参数分布比研究每个神经元的参数更容易。ridgelet 变换是一个伪逆变换算子,它能将给定函数 f 映射到参数分布 γ 上,从而使网络 NN[γ] 重现 f,即 NN[γ]=f。对于欧几里得空间上的深度-2 全连接网络,我们已经发现了小岭变换的闭式表达,因此可以描述参数是如何分布的。然而,对于各种现代神经网络架构,我们还不知道其闭式表达。在本文中,我们解释了一种使用傅立叶表达式的系统方法,以推导出各种现代网络的小岭变换,如有限场 Fp 上的网络、抽象希尔伯特空间 H 上的群卷积网络、非紧凑对称空间 G/K 上的全连接网络以及池化层或 d 平面小岭变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
期刊最新文献
The two-sample location shift model under log-concavity On cross-validated estimation of skew normal model Editorial Board Model averaging prediction for survival data with time-dependent effects Marginally constrained nonparametric Bayesian inference through Gaussian processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1