A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks

Pub Date : 2024-04-15 DOI:10.1016/j.jspi.2024.106184
Sho Sonoda , Isao Ishikawa , Masahiro Ikeda
{"title":"A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks","authors":"Sho Sonoda ,&nbsp;Isao Ishikawa ,&nbsp;Masahiro Ikeda","doi":"10.1016/j.jspi.2024.106184","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function <span><math><mi>f</mi></math></span> to the parameter distribution <span><math><mi>γ</mi></math></span> so that a network <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></mrow></math></span> reproduces <span><math><mi>f</mi></math></span>, i.e. <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span>. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, group convolutional networks on abstract Hilbert space <span><math><mi>H</mi></math></span>, fully-connected networks on noncompact symmetric spaces <span><math><mrow><mi>G</mi><mo>/</mo><mi>K</mi></mrow></math></span>, and pooling layers, or the <span><math><mi>d</mi></math></span>-plane ridgelet transform.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000417/pdfft?md5=98e3c89ff86925f67f13c56d174f0109&pid=1-s2.0-S0378375824000417-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function f to the parameter distribution γ so that a network NN[γ] reproduces f, i.e. NN[γ]=f. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields Fp, group convolutional networks on abstract Hilbert space H, fully-connected networks on noncompact symmetric spaces G/K, and pooling layers, or the d-plane ridgelet transform.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
为各种深度-2 神经网络推导小岭变换的统一傅立叶切片法
要研究神经网络参数,研究参数分布比研究每个神经元的参数更容易。ridgelet 变换是一个伪逆变换算子,它能将给定函数 f 映射到参数分布 γ 上,从而使网络 NN[γ] 重现 f,即 NN[γ]=f。对于欧几里得空间上的深度-2 全连接网络,我们已经发现了小岭变换的闭式表达,因此可以描述参数是如何分布的。然而,对于各种现代神经网络架构,我们还不知道其闭式表达。在本文中,我们解释了一种使用傅立叶表达式的系统方法,以推导出各种现代网络的小岭变换,如有限场 Fp 上的网络、抽象希尔伯特空间 H 上的群卷积网络、非紧凑对称空间 G/K 上的全连接网络以及池化层或 d 平面小岭变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1