Using Quantitative Microbial Risk Assessment (QMRA) of SARS-CoV-2 to understand possible exposure to health risks in selected wastewater treatment plants located in the Eastern region of South Africa
{"title":"Using Quantitative Microbial Risk Assessment (QMRA) of SARS-CoV-2 to understand possible exposure to health risks in selected wastewater treatment plants located in the Eastern region of South Africa","authors":"Velisa Vuyolwethu Qongwe , Kingsley Ehi Ebomah , Luyanda Msolo , Nolonwabo Nontongana , Anthony Ifeanyi Okoh","doi":"10.1016/j.mran.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><p>In the past two years, Covid-19 has emerged as the most severe and pressing public health issue, causing a great deal of damage to societal and economic welfare, as well as causing illness and mortality. The operators in wastewater treatment plants (WWTPs), particularly those employed in rural communities, appear to often exhibit a lack of adherence to proper safety protocols by not utilizing sufficient protective equipment while handling unprocessed sewage samples throughout the different phases of wastewater treatment and disposal. This study aimed at examining the potential health risk of infection among WWTP operators, as a result of unintentional ingestion of wastewater during routine duties in facilities that receive influent containing Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) from various areas. This study examined the prevalence of SARS-CoV-2 in grab samples of untreated wastewater samples using the real-time quantitative polymerase chain reaction (RT-qPCR) technique and quantitative microbial risk assessment (QMRA) model was employed on three probable exposure of SARS-CoV-2 scenarios that are expressed as moderate, aggressive and extreme (2 mL, 10 mL, 20 mL) to evaluate the probability of infection to WWTP workers based on the 6 h that the workers spent in WWTPs performing their daily activities which exposed them to potential health risk of various pathogens. At the highest SARS-CoV-2 genome of 266.23 × 10<sup>2</sup> gc/mL, the findings indicated that there was no statistically significant difference in the probability of infections with respect to seasonal differences because the P(i) value was greater than 0.05 (<em>p</em> > 0.05). Overall, P(i) was highly significant across all volumetric scenarios in the study with p value that was <em>p</em> < 0.001. The probability of getting infected during the different seasons is assumed to be low since there was no statistically difference in P(i) with respect to season however it can be assumed that there is a high chance of getting infected regardless of volumetric intake. Our study suggests that the risk of accidental occupational exposure to SARS-CoV-2 in raw wastewater is negligible to workers whereby workers would perform their daily activities without wearing protective gear. Nevertheless, the importance and work of WWTPs by workers should not be overlooked. Regardless of the situation, it is widely recognized that residential wastewater poses a potential risk of infection due to the presence of several enteric pathogens, therefore, it is crucial to ensure that those who are occupationally exposed to untreated wastewater are well equipped with suitable personal protective equipment (PPE).</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"26 ","pages":"Article 100293"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352352224000045/pdfft?md5=c9ee5fc14f54a5ab10d6483feaecaa21&pid=1-s2.0-S2352352224000045-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352224000045","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the past two years, Covid-19 has emerged as the most severe and pressing public health issue, causing a great deal of damage to societal and economic welfare, as well as causing illness and mortality. The operators in wastewater treatment plants (WWTPs), particularly those employed in rural communities, appear to often exhibit a lack of adherence to proper safety protocols by not utilizing sufficient protective equipment while handling unprocessed sewage samples throughout the different phases of wastewater treatment and disposal. This study aimed at examining the potential health risk of infection among WWTP operators, as a result of unintentional ingestion of wastewater during routine duties in facilities that receive influent containing Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) from various areas. This study examined the prevalence of SARS-CoV-2 in grab samples of untreated wastewater samples using the real-time quantitative polymerase chain reaction (RT-qPCR) technique and quantitative microbial risk assessment (QMRA) model was employed on three probable exposure of SARS-CoV-2 scenarios that are expressed as moderate, aggressive and extreme (2 mL, 10 mL, 20 mL) to evaluate the probability of infection to WWTP workers based on the 6 h that the workers spent in WWTPs performing their daily activities which exposed them to potential health risk of various pathogens. At the highest SARS-CoV-2 genome of 266.23 × 102 gc/mL, the findings indicated that there was no statistically significant difference in the probability of infections with respect to seasonal differences because the P(i) value was greater than 0.05 (p > 0.05). Overall, P(i) was highly significant across all volumetric scenarios in the study with p value that was p < 0.001. The probability of getting infected during the different seasons is assumed to be low since there was no statistically difference in P(i) with respect to season however it can be assumed that there is a high chance of getting infected regardless of volumetric intake. Our study suggests that the risk of accidental occupational exposure to SARS-CoV-2 in raw wastewater is negligible to workers whereby workers would perform their daily activities without wearing protective gear. Nevertheless, the importance and work of WWTPs by workers should not be overlooked. Regardless of the situation, it is widely recognized that residential wastewater poses a potential risk of infection due to the presence of several enteric pathogens, therefore, it is crucial to ensure that those who are occupationally exposed to untreated wastewater are well equipped with suitable personal protective equipment (PPE).
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.