Adsorption of silver nanoparticles by activated carbon from Eragrostis plana Nees: kinetics, equilibrium, and catalytic application in the degradation of 4-nitrophenol
Williane dos S. Francisco, Daniel Rapachi, Andrei V. Igansi, Caroline P. Ruas, Flávio A. Pavan, Luiz A. A. Pinto, Tito R. S. Cadaval Jr., Marcos A. Gelesky
{"title":"Adsorption of silver nanoparticles by activated carbon from Eragrostis plana Nees: kinetics, equilibrium, and catalytic application in the degradation of 4-nitrophenol","authors":"Williane dos S. Francisco, Daniel Rapachi, Andrei V. Igansi, Caroline P. Ruas, Flávio A. Pavan, Luiz A. A. Pinto, Tito R. S. Cadaval Jr., Marcos A. Gelesky","doi":"10.1007/s10450-024-00468-5","DOIUrl":null,"url":null,"abstract":"<p><i>Eragrostis plana</i> Nees is an invasive species in Brazilian territory, known for its high levels of lignin, cellulose, and hemicellulose, making it a valuable raw material for activated carbon (AC) production. In this study, AC derived from <i>Eragrostis plana</i> Nees leaves was investigated as an adsorbent for silver nanoparticles (AgNPs). Kinetics, equilibrium, and thermodynamic assays were conducted to assess AgNPs adsorption onto AC. The AC exhibited a substantial surface area of 1030 m<sup>2</sup> g<sup>−1</sup> and demonstrated significant adsorption capacity for AgNPs. Both the pseudo-second-order and Langmuir models were found to best describe the kinetics and equilibrium of adsorption, with the highest adsorption capacity observed at 55 °C, reaching 140.19 mg g<sup>−1</sup> according to the Langmuir model. Thermodynamic analysis revealed an enthalpy change (∆H°) of 60.75 kJ mol<sup>−1</sup> and an entropy change (∆S°) of 0.2711 kJ mol<sup>−1</sup> K<sup>−1</sup>, indicating that the adsorption process is spontaneous and endothermic. Additionally, the AgNPs/AC composite exhibited excellent catalytic activity in the 4-nitrophenol reduction, achieving a conversion rate of 97% within 10 min.</p>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"925 - 933"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00468-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Eragrostis plana Nees is an invasive species in Brazilian territory, known for its high levels of lignin, cellulose, and hemicellulose, making it a valuable raw material for activated carbon (AC) production. In this study, AC derived from Eragrostis plana Nees leaves was investigated as an adsorbent for silver nanoparticles (AgNPs). Kinetics, equilibrium, and thermodynamic assays were conducted to assess AgNPs adsorption onto AC. The AC exhibited a substantial surface area of 1030 m2 g−1 and demonstrated significant adsorption capacity for AgNPs. Both the pseudo-second-order and Langmuir models were found to best describe the kinetics and equilibrium of adsorption, with the highest adsorption capacity observed at 55 °C, reaching 140.19 mg g−1 according to the Langmuir model. Thermodynamic analysis revealed an enthalpy change (∆H°) of 60.75 kJ mol−1 and an entropy change (∆S°) of 0.2711 kJ mol−1 K−1, indicating that the adsorption process is spontaneous and endothermic. Additionally, the AgNPs/AC composite exhibited excellent catalytic activity in the 4-nitrophenol reduction, achieving a conversion rate of 97% within 10 min.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.