Low light intensity increased survival of coral spat in aquaculture

IF 2.7 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Coral Reefs Pub Date : 2024-04-20 DOI:10.1007/s00338-024-02489-6
B. D. Ramsby, F. Emonnot, F. Flores, S. Schipper, G. Diaz-Pulido, M. A. Abdul Wahab, A. Severati, A. P. Negri
{"title":"Low light intensity increased survival of coral spat in aquaculture","authors":"B. D. Ramsby, F. Emonnot, F. Flores, S. Schipper, G. Diaz-Pulido, M. A. Abdul Wahab, A. Severati, A. P. Negri","doi":"10.1007/s00338-024-02489-6","DOIUrl":null,"url":null,"abstract":"<p>Coral reef ecosystems are declining and may not recover under future climate scenarios without intervention. Seeding reefs with corals bred in aquaculture is a promising restoration intervention; however, early coral recruits (spat) are vulnerable to overgrowth by benthic algae and maximizing their survival is essential for the feasibility of large-scale breeding operations. This study investigated the optimal light quality and intensity for spat survival and growth in the presence of algal communities typically used in coral aquaculture to induce larval settlement, but which might also outcompete spat and reduce survival during the grow-out period. Spat were exposed to two light spectra (blue and a full spectrum) at four light intensities (5–160 µmol m<sup>−2</sup> s<sup>−1</sup>) over 12-week post-settlement. Survival was reduced under the highest intensity by nearly 40% compared to the lowest intensity. Light spectrum only affected survival at 60 µmol m<sup>−2</sup> s<sup>−1</sup>—where survival was higher under blue compared to full spectrum light. Light treatments did not affect final spat size but spat were 33% smaller at the highest light intensity in weeks 6 and 8 due to overgrowth by crustose coralline algae (CCA), which was most abundant under these conditions. Low light intensity, on the other hand, favored green and brown algae, potentially due to their respective physiologies or less competition from crustose coralline algae. These results indicate that low light intensity presents several advantages for maintaining spat in coral aquaculture, including maximizing survival without significantly affecting growth, as well as minimizing husbandry and operating expenses.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02489-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coral reef ecosystems are declining and may not recover under future climate scenarios without intervention. Seeding reefs with corals bred in aquaculture is a promising restoration intervention; however, early coral recruits (spat) are vulnerable to overgrowth by benthic algae and maximizing their survival is essential for the feasibility of large-scale breeding operations. This study investigated the optimal light quality and intensity for spat survival and growth in the presence of algal communities typically used in coral aquaculture to induce larval settlement, but which might also outcompete spat and reduce survival during the grow-out period. Spat were exposed to two light spectra (blue and a full spectrum) at four light intensities (5–160 µmol m−2 s−1) over 12-week post-settlement. Survival was reduced under the highest intensity by nearly 40% compared to the lowest intensity. Light spectrum only affected survival at 60 µmol m−2 s−1—where survival was higher under blue compared to full spectrum light. Light treatments did not affect final spat size but spat were 33% smaller at the highest light intensity in weeks 6 and 8 due to overgrowth by crustose coralline algae (CCA), which was most abundant under these conditions. Low light intensity, on the other hand, favored green and brown algae, potentially due to their respective physiologies or less competition from crustose coralline algae. These results indicate that low light intensity presents several advantages for maintaining spat in coral aquaculture, including maximizing survival without significantly affecting growth, as well as minimizing husbandry and operating expenses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低光照强度提高了水产养殖中珊瑚幼体的存活率
珊瑚礁生态系统正在衰退,如果不采取干预措施,在未来气候条件下可能无法恢复。用水产养殖中培育的珊瑚为珊瑚礁播种是一种很有前景的恢复干预措施;然而,早期珊瑚新苗(新苗)很容易受到底栖藻类过度生长的影响,最大限度地提高它们的存活率对大规模繁殖操作的可行性至关重要。本研究调查了在珊瑚水产养殖中通常用于诱导幼虫定居的藻类群落存在的情况下,孢子体存活和生长所需的最佳光质和光照强度。在幼体沉降后的 12 周内,将幼体置于四种光照强度(5-160 µmol m-2 s-1)的两种光谱(蓝光和全光谱)下。与最低强度相比,最高强度下的存活率降低了近 40%。光谱只影响 60 µmol m-2 s-1 光照下的存活率--与全光谱光相比,蓝光下的存活率更高。光照处理并不影响最终孢子的大小,但在第6周和第8周的最高光照强度下,由于甲壳珊瑚藻(CCA)的过度生长,孢子的体积小了33%,而在这些条件下,甲壳珊瑚藻的数量最多。另一方面,低光照强度有利于绿藻和褐藻的生长,这可能是由于它们各自的生理机能或来自甲壳珊瑚藻的竞争较少。这些结果表明,低光照强度在珊瑚养殖中具有多种优势,包括在不明显影响生长的情况下最大限度地提高存活率,以及最大限度地降低饲养和运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coral Reefs
Coral Reefs 生物-海洋与淡水生物学
CiteScore
6.80
自引率
11.40%
发文量
111
审稿时长
4-8 weeks
期刊介绍: Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences. Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.
期刊最新文献
Spatial structuring of coral traits along a subtropical-temperate transition zone persists despite localised signs of tropicalisation Reproductive ecology of fire corals in the northern Red Sea eDNA metabarcoding captures a decline of coral diversity at Taiping Island after an outbreak of Crown-of-Thorns starfish Long-term dynamics of hard coral cover across Indonesia Habitat trumps biogeography in structuring coral reef fishes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1