L. Zhi, X. Xie, W. Gao, X. Li, J. Bai, D. Wang, D. Shao, B. Cui
{"title":"Sediment Grain Size Affects Vegetation Patterns in River-Dominated Deltas","authors":"L. Zhi, X. Xie, W. Gao, X. Li, J. Bai, D. Wang, D. Shao, B. Cui","doi":"10.3808/jei.202400514","DOIUrl":null,"url":null,"abstract":"River deltas contain some of the most densely populated areas in the world and are characterized by a rich biodiversity and highly productive ecosystems. Although previous studies have revealed that sediment grain size plays a key role in determining delta morphology, its subsequent effects on deltaic vegetation distribution patterns remain elusive. We used a theoretical templet to facilitate our study by conducting numerical experiments to simulate deltaic morphological evolution in response to various sediment grain sizes and explored the vegetation distribution determined by the elevation profile of a typical river-dominated delta. Our results showed that a fine-grained, cohesive delta would develop vegetation patterns transitioning from high- to low-elevation adapted vegetation species with increasing distance, whereas the same vegetation transformation trend could occur with decreasing distance to the center of a large-grained, noncohesive delta. The modeled vegetation distribution pattern of fine-grained, cohesive and large-grained, noncohesive deltas could be well demonstrated in the natural deltas. In addition, vegetation distribution patterns are related to the grain size-driven morphological processes of deltas, and the leading role of cohesive and noncohesive sediments on constructed delta is critical in determining the resulting vegetation distribution pattern. The dominance of each vegetation type would gradually become stable as delta matures. The interspecies competitions could influence distribution patterns of each vegetation type by enhancing the fragmentation of mid-elevation adapted vegetation. The effects of sediment grain size on the deltaic vegetation patterns associated with a delta’s morphological processes have potential implications for the conservation and restoration of deltaic habitats.\n","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"8 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202400514","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
River deltas contain some of the most densely populated areas in the world and are characterized by a rich biodiversity and highly productive ecosystems. Although previous studies have revealed that sediment grain size plays a key role in determining delta morphology, its subsequent effects on deltaic vegetation distribution patterns remain elusive. We used a theoretical templet to facilitate our study by conducting numerical experiments to simulate deltaic morphological evolution in response to various sediment grain sizes and explored the vegetation distribution determined by the elevation profile of a typical river-dominated delta. Our results showed that a fine-grained, cohesive delta would develop vegetation patterns transitioning from high- to low-elevation adapted vegetation species with increasing distance, whereas the same vegetation transformation trend could occur with decreasing distance to the center of a large-grained, noncohesive delta. The modeled vegetation distribution pattern of fine-grained, cohesive and large-grained, noncohesive deltas could be well demonstrated in the natural deltas. In addition, vegetation distribution patterns are related to the grain size-driven morphological processes of deltas, and the leading role of cohesive and noncohesive sediments on constructed delta is critical in determining the resulting vegetation distribution pattern. The dominance of each vegetation type would gradually become stable as delta matures. The interspecies competitions could influence distribution patterns of each vegetation type by enhancing the fragmentation of mid-elevation adapted vegetation. The effects of sediment grain size on the deltaic vegetation patterns associated with a delta’s morphological processes have potential implications for the conservation and restoration of deltaic habitats.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.