{"title":"Output voltage tracking control of DC–DC boost converters with overcurrent protection","authors":"Tianliang Guo, Saijin Huang, Xiangyu Wang","doi":"10.1007/s43236-024-00815-3","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the output voltage tracking problem in DC-DC boost converters under the single-loop structure, emphasizing the need for overcurrent protection. Overcurrent protection is considered as a state constraint that is applied to the inductor current. A novel current-constrained controller is proposed by designing a special dynamic controller gain that is associated with the inductor current. Unlike existing nonlinear control methods capable of implementing state constraints, the controller introduced in this paper has a relatively simple structure that simplifies execution and reduces computational complexity. In contrast to methods that limit the initial states of the system, such as invariant set theory, the proposed method expands the range of the admissible set of the initial states. Experimental results demonstrate that, under the premise of satisfying current constraints, the proposed controller has better dynamic performance and robustness when compared to the nominal controllers that do not take current constraints into account.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00815-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the output voltage tracking problem in DC-DC boost converters under the single-loop structure, emphasizing the need for overcurrent protection. Overcurrent protection is considered as a state constraint that is applied to the inductor current. A novel current-constrained controller is proposed by designing a special dynamic controller gain that is associated with the inductor current. Unlike existing nonlinear control methods capable of implementing state constraints, the controller introduced in this paper has a relatively simple structure that simplifies execution and reduces computational complexity. In contrast to methods that limit the initial states of the system, such as invariant set theory, the proposed method expands the range of the admissible set of the initial states. Experimental results demonstrate that, under the premise of satisfying current constraints, the proposed controller has better dynamic performance and robustness when compared to the nominal controllers that do not take current constraints into account.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.