{"title":"Cylindrical Cross-Bars for Thermal Performance Augmentation in Air Channel","authors":"Frans Coetzee, Gazi Mahmood","doi":"10.1615/heattransres.2024052886","DOIUrl":null,"url":null,"abstract":"Experiments of the heat transfer and pressure drop are performed in a rectangular channel employing eight different arrays of cylindrical cross-bars as inserts. Numerical simulations are also performed to examine the secondary flow caused by the cylinders. The objectives are to investigate the enhancement of the channel-wall heat transfer and pressure drop caused by the local flow, cylinder array geometry, and flow Reynolds number. Two different cylinder diameters of 1.0 mm and 2.0 mm are employed. The diameter of 2.0 mm is used to create four in-line arrays while the diameter of 1.0 mm is used to create four staggered arrays of the cylinders. The cylinder arrays employ different diameter-to-pitch ratios (0.025 to 0.2) and cylinder orientations (45°, 90°) relative to the main flow direction. The flow Reynolds number is varied between 600 and 13000. Only two array geometries, one in-line and one staggered, with the cylinders oriented at 90° to the flow are modelled for the numerical study. The numerical results show the local flow accelerates in the gap between the cylinder and channel wall. The vortex shedding downstream of the cylinders interacts with the channel wall. The Nusselt number on the channel wall and friction factor are measured with and without the cylinders. The ratios of Nusselt numbers and friction factors increase with the Reynolds number when the Reynolds number is less than 3000. The ratios always increase with the diameter-to-pitch ratio.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":"17 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024052886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Experiments of the heat transfer and pressure drop are performed in a rectangular channel employing eight different arrays of cylindrical cross-bars as inserts. Numerical simulations are also performed to examine the secondary flow caused by the cylinders. The objectives are to investigate the enhancement of the channel-wall heat transfer and pressure drop caused by the local flow, cylinder array geometry, and flow Reynolds number. Two different cylinder diameters of 1.0 mm and 2.0 mm are employed. The diameter of 2.0 mm is used to create four in-line arrays while the diameter of 1.0 mm is used to create four staggered arrays of the cylinders. The cylinder arrays employ different diameter-to-pitch ratios (0.025 to 0.2) and cylinder orientations (45°, 90°) relative to the main flow direction. The flow Reynolds number is varied between 600 and 13000. Only two array geometries, one in-line and one staggered, with the cylinders oriented at 90° to the flow are modelled for the numerical study. The numerical results show the local flow accelerates in the gap between the cylinder and channel wall. The vortex shedding downstream of the cylinders interacts with the channel wall. The Nusselt number on the channel wall and friction factor are measured with and without the cylinders. The ratios of Nusselt numbers and friction factors increase with the Reynolds number when the Reynolds number is less than 3000. The ratios always increase with the diameter-to-pitch ratio.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.