A computational scheme connecting gene regulatory network dynamics with heterogeneous stem cell regeneration

Yakun Li, Xiyin Liang, Jinzhi Lei
{"title":"A computational scheme connecting gene regulatory network dynamics with heterogeneous stem cell regeneration","authors":"Yakun Li, Xiyin Liang, Jinzhi Lei","doi":"arxiv-2404.11761","DOIUrl":null,"url":null,"abstract":"Stem cell regeneration is a vital biological process in self-renewing\ntissues, governing development and tissue homeostasis. Gene regulatory network\ndynamics are pivotal in controlling stem cell regeneration and cell type\ntransitions. However, integrating the quantitative dynamics of gene regulatory\nnetworks at the single-cell level with stem cell regeneration at the population\nlevel poses significant challenges. This study presents a computational\nframework connecting gene regulatory network dynamics with stem cell\nregeneration through a data-driven formulation of the inheritance function. The\ninheritance function captures epigenetic state transitions during cell division\nin heterogeneous stem cell populations. Our scheme allows the derivation of the\ninheritance function based on a hybrid model of cross-cell-cycle gene\nregulation network dynamics. The proposed scheme enables us to derive the\ninheritance function based on the hybrid model of cross-cell-cycle gene\nregulation network dynamics. By explicitly incorporating gene regulatory\nnetwork structure, it replicates cross-cell-cycling gene regulation dynamics\nthrough individual-cell-based modeling. The numerical scheme holds the\npotential for extension to diverse gene regulatory networks, facilitating a\ndeeper understanding of the connection between gene regulation dynamics and\nstem cell regeneration.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell regeneration is a vital biological process in self-renewing tissues, governing development and tissue homeostasis. Gene regulatory network dynamics are pivotal in controlling stem cell regeneration and cell type transitions. However, integrating the quantitative dynamics of gene regulatory networks at the single-cell level with stem cell regeneration at the population level poses significant challenges. This study presents a computational framework connecting gene regulatory network dynamics with stem cell regeneration through a data-driven formulation of the inheritance function. The inheritance function captures epigenetic state transitions during cell division in heterogeneous stem cell populations. Our scheme allows the derivation of the inheritance function based on a hybrid model of cross-cell-cycle gene regulation network dynamics. The proposed scheme enables us to derive the inheritance function based on the hybrid model of cross-cell-cycle gene regulation network dynamics. By explicitly incorporating gene regulatory network structure, it replicates cross-cell-cycling gene regulation dynamics through individual-cell-based modeling. The numerical scheme holds the potential for extension to diverse gene regulatory networks, facilitating a deeper understanding of the connection between gene regulation dynamics and stem cell regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接基因调控网络动力学与异质干细胞再生的计算方案
干细胞再生是自我更新组织中的一个重要生物过程,支配着组织的发育和平衡。基因调控网络动力学是控制干细胞再生和细胞类型转换的关键。然而,将单细胞水平的基因调控网络定量动态与群体水平的干细胞再生结合起来是一项重大挑战。本研究提出了一个计算框架,通过数据驱动的遗传函数表述,将基因调控网络动力学与干细胞再生联系起来。遗传函数捕捉了异质干细胞群体细胞分裂过程中的表观遗传状态转变。我们的方案允许在跨细胞周期基因调控网络动力学混合模型的基础上推导遗传函数。我们提出的方案使我们能够在跨细胞周期基因调控网络动力学混合模型的基础上推导出遗传函数。通过明确纳入基因调控网络结构,它通过基于单细胞的建模复制了跨细胞周期基因调控动态。该数值方案有可能扩展到多种基因调控网络,有助于加深对基因调控动态与干细胞再生之间联系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1