Effects of green light supplementation with red and blue combinations of LED light spectrums on the growth and transcriptional response of Haematococcus pluvialis
{"title":"Effects of green light supplementation with red and blue combinations of LED light spectrums on the growth and transcriptional response of Haematococcus pluvialis","authors":"G. Karagülle, M. Telli","doi":"10.1002/btpr.3462","DOIUrl":null,"url":null,"abstract":"<p>Light management strategy is crucial for improving microalgal production in terms of higher biomass and economically valuable bioactive molecules. However, green light has received less attention in developing light managements for algae and higher plant due to its low absorption rate by chlorophyll. In this study, the effects of green light supplementation, in the combination with red and blue light were investigated in <i>Haematococcus pluvialis</i>. 10% and 20% of green light supplementations were applied in 3:2 ratios of red and blue LED light combinations as an expense of red-light. Growth rates, chlorophyll concentration, and dry weight were measured to assess the growth kinetics of <i>H. pluvialis</i> along with the relative transcript accumulations of four mRNAs: Rubisco, PTOX<sub>2</sub>, PsaB, and PsbS. Growth rates, chlorophyll concentrations and dry weight were found significantly higher in presence of 10% green light supplementation compared to red and blue light combinations. The relative transcript accumulations of Rubisco and PsbS genes showed significant upregulation at the end of the experiments (with the fold change of 42.91 ± 12.08 and 98.57 ± 27.38, respectively, relative to the beginning of the experiments) compared to combinations of red and blue light (fold change of 19.09 ± 3.0 and 47.77 ± 14.21, respectively, relative to beginning of the experiments). PsaB and PTOX<sub>2</sub> transcripts did not show significant accumulation differences between treatments. It seems that green light has a dose dependent additive effect on the growth rate of <i>H. pluvialis</i>. The upregulation of Rubisco and PsbS may indicate green light dependent carbon assimilation and light-harvesting response in <i>H. pluvialis</i>.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Light management strategy is crucial for improving microalgal production in terms of higher biomass and economically valuable bioactive molecules. However, green light has received less attention in developing light managements for algae and higher plant due to its low absorption rate by chlorophyll. In this study, the effects of green light supplementation, in the combination with red and blue light were investigated in Haematococcus pluvialis. 10% and 20% of green light supplementations were applied in 3:2 ratios of red and blue LED light combinations as an expense of red-light. Growth rates, chlorophyll concentration, and dry weight were measured to assess the growth kinetics of H. pluvialis along with the relative transcript accumulations of four mRNAs: Rubisco, PTOX2, PsaB, and PsbS. Growth rates, chlorophyll concentrations and dry weight were found significantly higher in presence of 10% green light supplementation compared to red and blue light combinations. The relative transcript accumulations of Rubisco and PsbS genes showed significant upregulation at the end of the experiments (with the fold change of 42.91 ± 12.08 and 98.57 ± 27.38, respectively, relative to the beginning of the experiments) compared to combinations of red and blue light (fold change of 19.09 ± 3.0 and 47.77 ± 14.21, respectively, relative to beginning of the experiments). PsaB and PTOX2 transcripts did not show significant accumulation differences between treatments. It seems that green light has a dose dependent additive effect on the growth rate of H. pluvialis. The upregulation of Rubisco and PsbS may indicate green light dependent carbon assimilation and light-harvesting response in H. pluvialis.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.