Extracting high-order cosmological information in galaxy surveys with power spectra

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-04-18 DOI:10.1038/s42005-024-01624-7
Yuting Wang, Gong-Bo Zhao, Kazuya Koyama, Will J. Percival, Ryuichi Takahashi, Chiaki Hikage, Héctor Gil-Marín, ChangHoon Hahn, Ruiyang Zhao, Weibing Zhang, Xiaoyong Mu, Yu Yu, Hong-Ming Zhu, Fei Ge
{"title":"Extracting high-order cosmological information in galaxy surveys with power spectra","authors":"Yuting Wang, Gong-Bo Zhao, Kazuya Koyama, Will J. Percival, Ryuichi Takahashi, Chiaki Hikage, Héctor Gil-Marín, ChangHoon Hahn, Ruiyang Zhao, Weibing Zhang, Xiaoyong Mu, Yu Yu, Hong-Ming Zhu, Fei Ge","doi":"10.1038/s42005-024-01624-7","DOIUrl":null,"url":null,"abstract":"The reconstruction method was proposed more than a decade ago to boost the signal of baryonic acoustic oscillations measured in galaxy redshift surveys, which is one of key probes for dark energy. After moving the observed overdensities in galaxy surveys back to their initial position, the reconstructed density field is closer to a linear Gaussian field, with higher-order information moved back into the power spectrum. We find that by jointly analysing power spectra measured from the pre- and post-reconstructed galaxy samples, higher-order information beyond the 2-point power spectrum can be efficiently extracted, which generally yields an information gain upon the analysis using the pre- or post-reconstructed galaxy sample alone. This opens a window to easily use higher-order information when constraining cosmological models. Baryon Acoustic Oscillations (BAO) are formed in the early universe and can be measured galaxy redshift survey to probe dark energy, but this feature is degraded with galaxy structure evolution. The authors propose a method that simultaneously use pre- and post-reconstruction power spectra to extract higher order information for surveys to constrain cosmological models.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01624-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01624-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reconstruction method was proposed more than a decade ago to boost the signal of baryonic acoustic oscillations measured in galaxy redshift surveys, which is one of key probes for dark energy. After moving the observed overdensities in galaxy surveys back to their initial position, the reconstructed density field is closer to a linear Gaussian field, with higher-order information moved back into the power spectrum. We find that by jointly analysing power spectra measured from the pre- and post-reconstructed galaxy samples, higher-order information beyond the 2-point power spectrum can be efficiently extracted, which generally yields an information gain upon the analysis using the pre- or post-reconstructed galaxy sample alone. This opens a window to easily use higher-order information when constraining cosmological models. Baryon Acoustic Oscillations (BAO) are formed in the early universe and can be measured galaxy redshift survey to probe dark energy, but this feature is degraded with galaxy structure evolution. The authors propose a method that simultaneously use pre- and post-reconstruction power spectra to extract higher order information for surveys to constrain cosmological models.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用功率谱提取星系调查中的高阶宇宙学信息
这种重构方法是十多年前提出的,目的是增强星系红移测量中测得的重子声振荡信号,这也是暗能量的关键探测器之一。将星系测量中观测到的过密度移回初始位置后,重建的密度场更接近线性高斯场,高阶信息被移回功率谱中。我们发现,通过联合分析从重建前和重建后的星系样本中测得的功率谱,可以有效地提取出两点功率谱以外的高阶信息,这通常会比单独使用重建前或重建后的星系样本进行分析获得更多的信息。这就为在约束宇宙学模型时轻松使用高阶信息打开了一扇窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1