首页 > 最新文献

Communications Physics最新文献

英文 中文
Speeding up adiabatic ion transport in macroscopic multi-Penning-trap stacks for high-precision experiments.
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-03-19 DOI: 10.1038/s42005-025-02031-2
Moritz von Boehn, Jan Schaper, Julia A Coenders, Johannes Brombacher, Teresa Meiners, Malte Niemann, Juan M Cornejo, Stefan Ulmer, Christian Ospelkaus

Multi-Penning traps are an excellent tool for high-precision tests of fundamental physics in a variety of applications, ranging from atomic mass measurements to symmetry tests. In such experiments, single ions are transferred between distinct trap regions as part of the experimental sequence, resulting in measurement dead time and heating of the ion motions. Here, we report a procedure to reduce the duration of adiabatic single-ion transport in macroscopic multi-Penning-trap stacks by using ion-transport waveforms and electronic filter predistortion. For this purpose, transport adiabaticity of a single laser-cooled 9Be+is analyzed via Doppler-broadened sideband spectra obtained by stimulated Raman spectroscopy, yielding an average heating per transport of 2.6 ± 4.0 quanta for transport times between 7 and 15 ms. Applying these techniques to current multi-Penning trap experiments could reduce ion transport times by up to three orders of magnitude. Furthermore, these results are a key requisite for implementing quantum logic spectroscopy in Penning trap experiments.

{"title":"Speeding up adiabatic ion transport in macroscopic multi-Penning-trap stacks for high-precision experiments.","authors":"Moritz von Boehn, Jan Schaper, Julia A Coenders, Johannes Brombacher, Teresa Meiners, Malte Niemann, Juan M Cornejo, Stefan Ulmer, Christian Ospelkaus","doi":"10.1038/s42005-025-02031-2","DOIUrl":"10.1038/s42005-025-02031-2","url":null,"abstract":"<p><p>Multi-Penning traps are an excellent tool for high-precision tests of fundamental physics in a variety of applications, ranging from atomic mass measurements to symmetry tests. In such experiments, single ions are transferred between distinct trap regions as part of the experimental sequence, resulting in measurement dead time and heating of the ion motions. Here, we report a procedure to reduce the duration of adiabatic single-ion transport in macroscopic multi-Penning-trap stacks by using ion-transport waveforms and electronic filter predistortion. For this purpose, transport adiabaticity of a single laser-cooled <sup>9</sup>Be<sup>+</sup>is analyzed via Doppler-broadened sideband spectra obtained by stimulated Raman spectroscopy, yielding an average heating per transport of 2.6 ± 4.0 quanta for transport times between 7 and 15 ms. Applying these techniques to current multi-Penning trap experiments could reduce ion transport times by up to three orders of magnitude. Furthermore, these results are a key requisite for implementing quantum logic spectroscopy in Penning trap experiments.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"107"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators. 利用局部伪发电机抑制热力学极限中的非微扰规整误差
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI: 10.1038/s42005-025-02035-y
Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, Jad C Halimeh

With recent progress in quantum simulations of lattice-gauge theories, it is becoming a pressing question how to reliably protect the gauge symmetry that defines such models. Recently, an experimentally feasible gauge-protection scheme has been proposed that is based on the concept of a local pseudogenerator, which is required to act identically to the full gauge-symmetry generator in the target gauge sector, but not necessarily outside of it. The scheme has been analytically and numerically shown to reliably stabilize lattice gauge theories in the presence of perturbative errors on finite-size analog quantum-simulation devices. In this work, through uniform matrix product state calculations, we demonstrate the efficacy of this scheme for nonperturbative errors in analog quantum simulators up to all accessible evolution times in the thermodynamic limit, where it is a priori neither established nor expected that this scheme will succeed. Our results indicate the presence of an emergent gauge symmetry in an adjusted gauge theory even in the thermodynamic limit, which is beyond our analytic predictions. Additionally, we show through quantum circuit model calculations that gauge protection with local pseudogenerators also successfully suppresses gauge violations on finite quantum computers that discretize time through Trotterization. Our results firm up the robustness and feasibility of the local pseudogenerator as a viable tool for enforcing gauge invariance in modern quantum simulators and noisy intermediate-scale quantum devices.

{"title":"Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators.","authors":"Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, Jad C Halimeh","doi":"10.1038/s42005-025-02035-y","DOIUrl":"10.1038/s42005-025-02035-y","url":null,"abstract":"<p><p>With recent progress in quantum simulations of lattice-gauge theories, it is becoming a pressing question how to reliably protect the gauge symmetry that defines such models. Recently, an experimentally feasible gauge-protection scheme has been proposed that is based on the concept of a local pseudogenerator, which is required to act identically to the full gauge-symmetry generator in the target gauge sector, but not necessarily outside of it. The scheme has been analytically and numerically shown to reliably stabilize lattice gauge theories in the presence of perturbative errors on finite-size analog quantum-simulation devices. In this work, through uniform matrix product state calculations, we demonstrate the efficacy of this scheme for nonperturbative errors in analog quantum simulators up to all accessible evolution times in the thermodynamic limit, where it is a priori neither established nor expected that this scheme will succeed. Our results indicate the presence of an emergent gauge symmetry in an adjusted gauge theory even in the thermodynamic limit, which is beyond our analytic predictions. Additionally, we show through quantum circuit model calculations that gauge protection with local pseudogenerators also successfully suppresses gauge violations on finite quantum computers that discretize time through Trotterization. Our results firm up the robustness and feasibility of the local pseudogenerator as a viable tool for enforcing gauge invariance in modern quantum simulators and noisy intermediate-scale quantum devices.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"106"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths.
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-03-01 DOI: 10.1038/s42005-025-02006-3
Alexandre Abbass Hamadeh, Abbas Koujok, Davi R Rodrigues, Alejandro Riveros, Vitaliy Lomakin, Giovanni Finocchio, Grégoire De Loubens, Olivier Klein, Philipp Pirro

Magnetic vortices are highly tunable, nonlinear systems with ideal properties for being applied in spin wave emission, data storage, and neuromorphic computing. However, their technological application is impaired by a limited understanding of non-conservative forces, that results in the open challenge of attaining precise control over vortex dynamics in coupled vortex systems. Here, we present an analytical model for the gyrotropic dynamics of coupled magnetic vortices within nano-pillar structures, revealing how conservative and non-conservative forces dictate their complex behavior. Validated by micromagnetic simulations, our model accurately predicts dynamic states, controllable through external current and magnetic field adjustments. The experimental verification in a fabricated nano-pillar device aligns with our predictions, and it showcases the system's adaptability in dynamical coupling. The unique dynamical states, combined with the system's tunability and inherent memory, make it an exemplary foundation for reservoir computing. This positions our discovery at the forefront of utilizing magnetic vortex dynamics for innovative computing solutions, marking a leap towards efficient data processing technologies.

{"title":"Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths.","authors":"Alexandre Abbass Hamadeh, Abbas Koujok, Davi R Rodrigues, Alejandro Riveros, Vitaliy Lomakin, Giovanni Finocchio, Grégoire De Loubens, Olivier Klein, Philipp Pirro","doi":"10.1038/s42005-025-02006-3","DOIUrl":"10.1038/s42005-025-02006-3","url":null,"abstract":"<p><p>Magnetic vortices are highly tunable, nonlinear systems with ideal properties for being applied in spin wave emission, data storage, and neuromorphic computing. However, their technological application is impaired by a limited understanding of non-conservative forces, that results in the open challenge of attaining precise control over vortex dynamics in coupled vortex systems. Here, we present an analytical model for the gyrotropic dynamics of coupled magnetic vortices within nano-pillar structures, revealing how conservative and non-conservative forces dictate their complex behavior. Validated by micromagnetic simulations, our model accurately predicts dynamic states, controllable through external current and magnetic field adjustments. The experimental verification in a fabricated nano-pillar device aligns with our predictions, and it showcases the system's adaptability in dynamical coupling. The unique dynamical states, combined with the system's tunability and inherent memory, make it an exemplary foundation for reservoir computing. This positions our discovery at the forefront of utilizing magnetic vortex dynamics for innovative computing solutions, marking a leap towards efficient data processing technologies.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"85"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling noise with self-organized resetting.
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-02-12 DOI: 10.1038/s42005-025-01985-7
Felix J Meigel, Steffen Rulands

Biological systems often consist of a small number of constituents and are therefore inherently noisy. To function effectively, these systems must employ mechanisms to constrain the accumulation of noise. Such mechanisms have been extensively studied and comprise the constraint by external forces, nonlinear interactions, or the resetting of the system to a predefined state. Here, we propose a fourth paradigm for noise constraint: self-organized resetting, where the resetting rate and position emerge from self-organization through time-discrete interactions. We study general properties of self-organized resetting systems using the paradigmatic example of cooperative resetting, where random pairs of Brownian particles are reset to their respective average. We demonstrate that such systems undergo a delocalization phase transition, separating regimes of constrained and unconstrained noise accumulation. Additionally, we show that systems with self-organized resetting can adapt to external forces and optimize search behavior for reaching target values. Self-organized resetting has various applications in nature and technology, which we demonstrate in the context of sexual interactions in fungi and spatial dispersion in shared mobility services. This work opens routes into the application of self-organized resetting across various systems in biology and technology.

{"title":"Controlling noise with self-organized resetting.","authors":"Felix J Meigel, Steffen Rulands","doi":"10.1038/s42005-025-01985-7","DOIUrl":"10.1038/s42005-025-01985-7","url":null,"abstract":"<p><p>Biological systems often consist of a small number of constituents and are therefore inherently noisy. To function effectively, these systems must employ mechanisms to constrain the accumulation of noise. Such mechanisms have been extensively studied and comprise the constraint by external forces, nonlinear interactions, or the resetting of the system to a predefined state. Here, we propose a fourth paradigm for noise constraint: self-organized resetting, where the resetting rate and position emerge from self-organization through time-discrete interactions. We study general properties of self-organized resetting systems using the paradigmatic example of cooperative resetting, where random pairs of Brownian particles are reset to their respective average. We demonstrate that such systems undergo a delocalization phase transition, separating regimes of constrained and unconstrained noise accumulation. Additionally, we show that systems with self-organized resetting can adapt to external forces and optimize search behavior for reaching target values. Self-organized resetting has various applications in nature and technology, which we demonstrate in the context of sexual interactions in fungi and spatial dispersion in shared mobility services. This work opens routes into the application of self-organized resetting across various systems in biology and technology.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"63"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints.
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI: 10.1038/s42005-025-01936-2
Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko

Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.

{"title":"Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints.","authors":"Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko","doi":"10.1038/s42005-025-01936-2","DOIUrl":"10.1038/s42005-025-01936-2","url":null,"abstract":"<p><p>Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"25"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations.
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-01-30 DOI: 10.1038/s42005-025-01955-z
Imelda Romero, Jannes Nys, Giuseppe Carleo

Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework for embedding lattice symmetries in fermionic wavefunctions and demonstrate its ability to target both ground states and low-lying excitations. Using group-equivariant neural backflow transformations, we study the t-V model on a square lattice away from half-filling. Our symmetry-aware backflow significantly improves ground-state energies and yields accurate low-energy excitations for lattices up to 10 × 10. We also compute accurate two-point density-correlation functions and the structure factor to identify phase transitions and critical points. These findings introduce a symmetry-aware framework important for studying quantum materials and phase transitions.

{"title":"Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations.","authors":"Imelda Romero, Jannes Nys, Giuseppe Carleo","doi":"10.1038/s42005-025-01955-z","DOIUrl":"10.1038/s42005-025-01955-z","url":null,"abstract":"<p><p>Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework for embedding lattice symmetries in fermionic wavefunctions and demonstrate its ability to target both ground states and low-lying excitations. Using group-equivariant neural backflow transformations, we study the <i>t</i>-<i>V</i> model on a square lattice away from half-filling. Our symmetry-aware backflow significantly improves ground-state energies and yields accurate low-energy excitations for lattices up to 10 × 10. We also compute accurate two-point density-correlation functions and the structure factor to identify phase transitions and critical points. These findings introduce a symmetry-aware framework important for studying quantum materials and phase transitions.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"46"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analytical model of "Electron-Only" magnetic reconnection rates. “纯电子”磁重联率的解析模型。
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-04-01 DOI: 10.1038/s42005-025-02034-z
Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa

"Electron-only" reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA's Magnetospheric-Multiscale (MMS) mission and other ongoing missions.

可以说,"纯电子 "重联在湍流中无处不在,它既与周围的离子不耦合,速度又比标准重联快很多。要了解这种新型机制的速率,关键的一步是模拟限制磁通传输的流出速度,它是超离子阿尔弗韦尼速度,但明显低于基于渐近重连接场的电子阿尔弗韦尼速度。在这里,我们建立了一个简单的模型,通过考虑重连接的多尺度性质、霍尔介导的电子外流速度以及小系统内的压力积聚来确定这一极限速度。所预测的速度和各种关键量的标度与全动力学模拟的结果相比较,可以很好地解释美国宇航局的磁层多尺度(MMS)任务和其他正在进行的任务的观测结果。
{"title":"An analytical model of \"Electron-Only\" magnetic reconnection rates.","authors":"Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa","doi":"10.1038/s42005-025-02034-z","DOIUrl":"10.1038/s42005-025-02034-z","url":null,"abstract":"<p><p>\"Electron-only\" reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA's Magnetospheric-Multiscale (MMS) mission and other ongoing missions.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"128"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143779347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct measurement of three different deformations near the ground state in an atomic nucleus. 原子核基态附近三种不同变形的直接测量。
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1038/s42005-024-01928-8
Adrian Montes Plaza, Janne Pakarinen, Philippos Papadakis, Rolf-Dietmar Herzberg, Rauno Julin, Tomás R Rodríguez, Andrew D Briscoe, Andrés Illana, Joonas Ojala, Panu Ruotsalainen, Eetu Uusikylä, Betool Alayed, Ahmed Alharbi, Odette Alonso-Sañudo, Kalle Auranen, Ville Bogdanoff, Jamie Chadderton, Arwin Esmaylzadeh, Christoph Fransen, Tuomas Grahn, Paul T Greenlees, Jan Jolie, Henna Joukainen, Henri Jutila, Casper-David Lakenbrink, Matti Leino, Jussi Louko, Minna Luoma, Adam McCarter, Bondili Sreenivasa Nara Singh, Panu Rahkila, Andrea Raggio, Jorge Romero, Jan Sarén, Maria-Magdalini Satrazani, Marek Stryjczyk, Conor M Sullivan, Álvaro Tolosa-Delgado, Juha Uusitalo, Franziskus von Spee, Jessica Warbinek, George L Zimba

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. 190Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in 190Pb. Contrary to earlier interpretations, we associate the collective yrast band as predominantly oblate, while the non-yrast band with higher collectivity follows characteristics of more deformed, predominantly prolate bands. Direct measurement of the E 0 ( 0 2 + 0 1 + ) transition and γ-e - coincidence relations allowed us to locate and firmly assign the 0 2 + state in the level scheme and to discover a spherical 2 3 + state at 1281(1) keV with B ( E 2 ; 2 3 + 0 1 + ) = 1.2 ( 3 ) W.u. These assignments are based purely on observed transition probabilities and monopole strength values, and do not rely on model calculations for their interpretation.

原子核是研究复杂量子现象的主要实验室,在那里,轻微的核子重排会引起重大的结构变化。190Pb是已知中子亏缺最重的Pb同位素,可以呈现三种不同的形状:长条形、扁圆形和球形,激发能几乎简并。在这里,我们报告了三个最先进的测量结果,直接观察这些形变在190Pb。与早些时候解释,我们将集体yrast乐队主要扁,而更高的集体遵循特色non-yrast带更多的畸形,主要是扩展的乐队。直接测量e0(0 2 +→0 1 +)跃迁和γ-e -符合关系,使我们能够确定并确定能级方案中的0 2 +态,并在1281(1)keV处发现具有B (E 2)的球形2 3 +态;这些赋值完全基于观测到的跃迁概率和单极子强度值,而不依赖于模型计算来解释。
{"title":"Direct measurement of three different deformations near the ground state in an atomic nucleus.","authors":"Adrian Montes Plaza, Janne Pakarinen, Philippos Papadakis, Rolf-Dietmar Herzberg, Rauno Julin, Tomás R Rodríguez, Andrew D Briscoe, Andrés Illana, Joonas Ojala, Panu Ruotsalainen, Eetu Uusikylä, Betool Alayed, Ahmed Alharbi, Odette Alonso-Sañudo, Kalle Auranen, Ville Bogdanoff, Jamie Chadderton, Arwin Esmaylzadeh, Christoph Fransen, Tuomas Grahn, Paul T Greenlees, Jan Jolie, Henna Joukainen, Henri Jutila, Casper-David Lakenbrink, Matti Leino, Jussi Louko, Minna Luoma, Adam McCarter, Bondili Sreenivasa Nara Singh, Panu Rahkila, Andrea Raggio, Jorge Romero, Jan Sarén, Maria-Magdalini Satrazani, Marek Stryjczyk, Conor M Sullivan, Álvaro Tolosa-Delgado, Juha Uusitalo, Franziskus von Spee, Jessica Warbinek, George L Zimba","doi":"10.1038/s42005-024-01928-8","DOIUrl":"10.1038/s42005-024-01928-8","url":null,"abstract":"<p><p>Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. <sup>190</sup>Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in <sup>190</sup>Pb. Contrary to earlier interpretations, we associate the collective yrast band as predominantly oblate, while the non-yrast band with higher collectivity follows characteristics of more deformed, predominantly prolate bands. Direct measurement of the <math><mi>E</mi> <mn>0</mn> <mrow><mo>(</mo> <mrow> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> <mo>→</mo> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </mrow> <mo>)</mo></mrow> </math> transition and <i>γ</i>-<i>e</i> <sup>-</sup> coincidence relations allowed us to locate and firmly assign the <math> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </math> state in the level scheme and to discover a spherical <math> <msubsup><mrow><mn>2</mn></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </math> state at 1281(1) keV with <math><mi>B</mi> <mrow><mo>(</mo> <mrow><mi>E</mi> <mn>2</mn> <mo>;</mo> <msubsup><mrow><mn>2</mn></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> <mo>→</mo> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </mrow> <mo>)</mo></mrow> <mo>=</mo> <mn>1.2</mn> <mrow><mo>(</mo> <mrow><mn>3</mn></mrow> <mo>)</mo></mrow> </math> W.u. These assignments are based purely on observed transition probabilities and monopole strength values, and do not rely on model calculations for their interpretation.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"8"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media 揭示重力在振动颗粒介质中形成入侵者动力学中的作用
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-30 DOI: 10.1038/s42005-024-01927-9
Ke Cheng, Meiying Hou, Wei Sun, Zhihong Qiao, Xiang Li, Chufan Lai, Jinchao Yuan, Tuo Li, Fangfu Ye, Ke Chen, Mingcheng Yang
Our experiments aboard the Chinese Space Station reveal a gravity-driven transition in intruder dynamics within vibrated granular media. While vibrations typically enable an intruder to ascend in a granular bed, low-gravity conditions induce it to descend under similar vibrations. Using a Hall-sensor array tracking method, we monitor the intruder’s movement throughout each vibration cycle and identified two competing mechanisms: inertia and gravity-dependent penetration. As gravity decreases, we observe a significant reduction in the scaled damping coefficient and hydrostatic pressure coefficient indicating that bed particles disperse more readily upon intruder impact, facilitating deeper penetration. Our findings highlight a critical transition from downward to upward motion of the intruder as vibration acceleration exceeds a threshold, which increases as gravity decreases. These insights into intruder dynamics in low-gravity environments have significant implications for asteroid exploration and lunar base construction, enhancing our understanding of the Brazil nut effect and the formation of planetesimal. Granular segregation may play a role in shaping the surface features of small celestial bodies such as asteroids that can be explained with the Brazil-nut effect. The authors study intruder dynamics in granular media on board the Chinese Space Station, finding that contrary to what occurs on Earth intruders tend to descend in microgravity conditions under specific vibration parameters
我们在中国空间站上的实验揭示了振动颗粒介质中入侵者动力学的重力驱动转变。虽然振动通常使入侵者能够在颗粒床中上升,但低重力条件会使其在类似的振动下下降。使用霍尔传感器阵列跟踪方法,我们在每个振动周期内监测入侵者的运动,并确定了两种竞争机制:惯性和重力依赖穿透。随着重力的减小,我们观察到标度阻尼系数和静水压力系数显著降低,这表明床层颗粒在入侵者撞击时更容易分散,有利于更深的渗透。我们的研究结果强调,当振动加速度超过一个阈值时,入侵者从向下运动到向上运动的关键转变,随着重力的减少,加速度增加。这些关于低重力环境下入侵者动力学的见解对小行星探索和月球基地建设具有重要意义,增强了我们对巴西坚果效应和小行星形成的理解。颗粒分离可能在形成小行星等小天体的表面特征方面发挥作用,这可以用巴西坚果效应来解释。作者研究了中国空间站上颗粒介质中的入侵者动力学,发现与地球上发生的情况相反,入侵者在特定振动参数下的微重力条件下倾向于下降
{"title":"Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media","authors":"Ke Cheng,&nbsp;Meiying Hou,&nbsp;Wei Sun,&nbsp;Zhihong Qiao,&nbsp;Xiang Li,&nbsp;Chufan Lai,&nbsp;Jinchao Yuan,&nbsp;Tuo Li,&nbsp;Fangfu Ye,&nbsp;Ke Chen,&nbsp;Mingcheng Yang","doi":"10.1038/s42005-024-01927-9","DOIUrl":"10.1038/s42005-024-01927-9","url":null,"abstract":"Our experiments aboard the Chinese Space Station reveal a gravity-driven transition in intruder dynamics within vibrated granular media. While vibrations typically enable an intruder to ascend in a granular bed, low-gravity conditions induce it to descend under similar vibrations. Using a Hall-sensor array tracking method, we monitor the intruder’s movement throughout each vibration cycle and identified two competing mechanisms: inertia and gravity-dependent penetration. As gravity decreases, we observe a significant reduction in the scaled damping coefficient and hydrostatic pressure coefficient indicating that bed particles disperse more readily upon intruder impact, facilitating deeper penetration. Our findings highlight a critical transition from downward to upward motion of the intruder as vibration acceleration exceeds a threshold, which increases as gravity decreases. These insights into intruder dynamics in low-gravity environments have significant implications for asteroid exploration and lunar base construction, enhancing our understanding of the Brazil nut effect and the formation of planetesimal. Granular segregation may play a role in shaping the surface features of small celestial bodies such as asteroids that can be explained with the Brazil-nut effect. The authors study intruder dynamics in granular media on board the Chinese Space Station, finding that contrary to what occurs on Earth intruders tend to descend in microgravity conditions under specific vibration parameters","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01927-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-third magnetization plateau in Quantum Kagome antiferromagnet 量子Kagome反铁磁体的三分之一磁化平台
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-28 DOI: 10.1038/s42005-024-01922-0
Moyu Kato, Yasuo Narumi, Katsuhiro Morita, Yoshitaka Matsushita, Shuhei Fukuoka, Satoshi Yamashita, Yasuhiro Nakazawa, Migaku Oda, Hiroaki Hayashi, Kazunari Yamaura, Masayuki Hagiwara, Hiroyuki K. Yoshida
The emergence of nontrivial quantum states from competing interactions is a central issue in quantum magnetism. In particular, for the realization of the quantum spin-liquid state, extensive studies have been conducted on frustrated systems, such as kagome antiferromagnets and Kitaev magnets. Novel quantum states in magnetic fields have remained elusive despite the prediction of rich physics. This can be attributed to material scarcity and the difficulty of precise measurements under ultra-high magnetic fields. Here, in this study, we develop the Kapellasite-type compound InCu3(OH)6Cl3, whose exchange interactions are in appropriate energy scale to comprehensively elucidate the magnetic properties of the frustrated S = 1/2 kagome antiferromagnet. The one-third magnetization plateau was clearly observed. Moreover, the large temperature-linear term in the heat capacity was observed in the magnetic fields, indicating the excitation of gapless quasiparticles in the vicinity of the plateau. These results shed light on the critical behaviors between quantum spin-liquid and -solid in kagome antiferromagnets under high magnetic fields. A range of non-trivial quantum phenomena can emerge from frustrated magnetic systems and a prime example is a quantum spin liquid. Here, the authors conduct specific heat and magnetization measurements on the Kapellasite-type compound InCu3(OH)6Cl3 in order to characterize and define the range of the magnetization plateau in this material.
从竞争相互作用中产生非平凡量子态是量子磁学的一个核心问题。特别是为了实现量子自旋液态,对kagome反铁磁体和Kitaev磁体等受挫系统进行了广泛的研究。尽管有丰富的物理学预测,磁场中的新量子态仍然难以捉摸。这可以归因于材料稀缺和在超高磁场下精确测量的困难。在本研究中,我们开发了kapellasitetype化合物InCu3(OH)6Cl3,其交换相互作用在合适的能量尺度上,以全面阐明受挫S = 1/2 kagome反铁磁体的磁性。三分之一磁化平台清晰可见。此外,在磁场中观察到热容的大温度线性项,表明在平台附近有无间隙准粒子的激发。这些结果揭示了高磁场下kagome反铁磁体中量子自旋液体和自旋固体之间的临界行为。一系列非平凡的量子现象可以从受挫的磁系统中出现,一个典型的例子是量子自旋液体。在这里,作者对kapellasite型化合物InCu3(OH)6Cl3进行了比热和磁化测量,以表征和确定该材料的磁化平台范围。
{"title":"One-third magnetization plateau in Quantum Kagome antiferromagnet","authors":"Moyu Kato,&nbsp;Yasuo Narumi,&nbsp;Katsuhiro Morita,&nbsp;Yoshitaka Matsushita,&nbsp;Shuhei Fukuoka,&nbsp;Satoshi Yamashita,&nbsp;Yasuhiro Nakazawa,&nbsp;Migaku Oda,&nbsp;Hiroaki Hayashi,&nbsp;Kazunari Yamaura,&nbsp;Masayuki Hagiwara,&nbsp;Hiroyuki K. Yoshida","doi":"10.1038/s42005-024-01922-0","DOIUrl":"10.1038/s42005-024-01922-0","url":null,"abstract":"The emergence of nontrivial quantum states from competing interactions is a central issue in quantum magnetism. In particular, for the realization of the quantum spin-liquid state, extensive studies have been conducted on frustrated systems, such as kagome antiferromagnets and Kitaev magnets. Novel quantum states in magnetic fields have remained elusive despite the prediction of rich physics. This can be attributed to material scarcity and the difficulty of precise measurements under ultra-high magnetic fields. Here, in this study, we develop the Kapellasite-type compound InCu3(OH)6Cl3, whose exchange interactions are in appropriate energy scale to comprehensively elucidate the magnetic properties of the frustrated S = 1/2 kagome antiferromagnet. The one-third magnetization plateau was clearly observed. Moreover, the large temperature-linear term in the heat capacity was observed in the magnetic fields, indicating the excitation of gapless quasiparticles in the vicinity of the plateau. These results shed light on the critical behaviors between quantum spin-liquid and -solid in kagome antiferromagnets under high magnetic fields. A range of non-trivial quantum phenomena can emerge from frustrated magnetic systems and a prime example is a quantum spin liquid. Here, the authors conduct specific heat and magnetization measurements on the Kapellasite-type compound InCu3(OH)6Cl3 in order to characterize and define the range of the magnetization plateau in this material.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01922-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1