Non-equilibrium states in polyelectrolyte-surfactant systems at fluid interfaces: A critical review

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2024-04-04 DOI:10.1016/j.cocis.2024.101804
Ana Puente-Santamaría , Francisco Ortega , Armando Maestro , Ramón G. Rubio , Eduardo Guzmán
{"title":"Non-equilibrium states in polyelectrolyte-surfactant systems at fluid interfaces: A critical review","authors":"Ana Puente-Santamaría ,&nbsp;Francisco Ortega ,&nbsp;Armando Maestro ,&nbsp;Ramón G. Rubio ,&nbsp;Eduardo Guzmán","doi":"10.1016/j.cocis.2024.101804","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last two decades, a significant body of research has been developed trying to understand the association and properties of mixtures formed by oppositely charged polyelectrolytes and surfactants. Particular emphasis has been given to their interfacial properties and the intriguing formation of nonequilibrium states. The synergy between these components at interfaces has attracted considerable attention due to its relevance in various industrial and biological applications. The combination of oppositely charged entities leads to complex interactions that influence the stability and behavior of interfaces. This review critically examines recent advances toward understanding the interfacial behavior when polyelectrolytes and surfactants coexist. Emphasis is placed on the existence of nonequilibrium states, shedding light on transient phenomena and kinetic aspects that play a crucial role in the overall system behavior. This will provide insights into the mechanisms governing the interfacial phenomena in these mixed systems. In summary, this review will contribute to the fundamental understanding of colloidal and interfacial science, offering a valuable perspective on designing and optimizing materials with tailored properties.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000220/pdfft?md5=a3efd0d71219c356476b4ad2d7dfe876&pid=1-s2.0-S1359029424000220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000220","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last two decades, a significant body of research has been developed trying to understand the association and properties of mixtures formed by oppositely charged polyelectrolytes and surfactants. Particular emphasis has been given to their interfacial properties and the intriguing formation of nonequilibrium states. The synergy between these components at interfaces has attracted considerable attention due to its relevance in various industrial and biological applications. The combination of oppositely charged entities leads to complex interactions that influence the stability and behavior of interfaces. This review critically examines recent advances toward understanding the interfacial behavior when polyelectrolytes and surfactants coexist. Emphasis is placed on the existence of nonequilibrium states, shedding light on transient phenomena and kinetic aspects that play a crucial role in the overall system behavior. This will provide insights into the mechanisms governing the interfacial phenomena in these mixed systems. In summary, this review will contribute to the fundamental understanding of colloidal and interfacial science, offering a valuable perspective on designing and optimizing materials with tailored properties.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体界面上聚电解质-表面活性剂体系的非平衡状态:重要综述
在过去的二十年里,人们已经开展了大量研究,试图了解由带电相反的聚电解质和表面活性剂形成的混合物的关联和特性。研究重点尤其放在它们的界面特性和非平衡态的形成上。这些成分在界面上的协同作用因其在各种工业和生物应用中的相关性而备受关注。带相反电荷的实体结合在一起会产生复杂的相互作用,从而影响界面的稳定性和行为。本综述认真研究了了解聚电解质和表面活性剂共存时界面行为的最新进展。重点关注非平衡态的存在,揭示在整个系统行为中起关键作用的瞬态现象和动力学方面。这将有助于深入了解这些混合体系中界面现象的作用机制。总之,这篇综述将有助于从根本上理解胶体和界面科学,为设计和优化具有定制特性的材料提供宝贵的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1