A sparse empirical Bayes approach to high‐dimensional Gaussian process‐based varying coefficient models

Pub Date : 2024-04-20 DOI:10.1002/sta4.678
Myungjin Kim, Gyuhyeong Goh
{"title":"A sparse empirical Bayes approach to high‐dimensional Gaussian process‐based varying coefficient models","authors":"Myungjin Kim, Gyuhyeong Goh","doi":"10.1002/sta4.678","DOIUrl":null,"url":null,"abstract":"Despite the increasing importance of high‐dimensional varying coefficient models, the study of their Bayesian versions is still in its infancy. This paper contributes to the literature by developing a sparse empirical Bayes formulation that addresses the problem of high‐dimensional model selection in the framework of Bayesian varying coefficient modelling under Gaussian process (GP) priors. To break the computational bottleneck of GP‐based varying coefficient modelling, we introduce the low‐cost computation strategy that incorporates linear algebra techniques and the Laplace approximation into the evaluation of the high‐dimensional posterior model distribution. A simulation study is conducted to demonstrate the superiority of the proposed Bayesian method compared to an existing high‐dimensional varying coefficient modelling approach. In addition, its applicability to real data analysis is illustrated using yeast cell cycle data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the increasing importance of high‐dimensional varying coefficient models, the study of their Bayesian versions is still in its infancy. This paper contributes to the literature by developing a sparse empirical Bayes formulation that addresses the problem of high‐dimensional model selection in the framework of Bayesian varying coefficient modelling under Gaussian process (GP) priors. To break the computational bottleneck of GP‐based varying coefficient modelling, we introduce the low‐cost computation strategy that incorporates linear algebra techniques and the Laplace approximation into the evaluation of the high‐dimensional posterior model distribution. A simulation study is conducted to demonstrate the superiority of the proposed Bayesian method compared to an existing high‐dimensional varying coefficient modelling approach. In addition, its applicability to real data analysis is illustrated using yeast cell cycle data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于高斯过程的高维变化系数模型的稀疏经验贝叶斯方法
尽管高维变化系数模型越来越重要,但对其贝叶斯版本的研究仍处于起步阶段。本文通过开发一种稀疏经验贝叶斯公式,在高斯过程(GP)先验下的贝叶斯变化系数建模框架内解决了高维模型选择问题,为相关文献做出了贡献。为了打破基于 GP 的变化系数建模的计算瓶颈,我们引入了低成本计算策略,将线性代数技术和拉普拉斯近似纳入高维后验模型分布的评估中。我们进行了一项模拟研究,以证明与现有的高维变化系数建模方法相比,所提出的贝叶斯方法更具优势。此外,还利用酵母细胞周期数据说明了该方法在实际数据分析中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1