{"title":"MIM Waveguide Based Multi-Functional Plasmonic Logic Device by Phase Modulation","authors":"Lokendra Singh;Prakash Pareek;Chinmoy Saha;Vigneswaran Dharsthanan;Niteshkumar Agrawal;Roshan Kumar","doi":"10.1109/TNANO.2024.3390789","DOIUrl":null,"url":null,"abstract":"Energy consumption is a primary concern in the computational process of heavy networks like Google, etc., where the key goal is to make them ultra-fast with low heat generation. Optical processing can play an important role in shrinking the heat energy and allow the system to work smoothly but beyond the Boltzmann limit of kTLn2. In the current epoch, optical reversible logic functions are greatly considered as a potential solution for minimizing heat dissipation or information loss and found applications in nanotechnology, logic circuits for biomedical applications, and so on. This work proposed the optical Kerr effect-based multifunctional plasmonic logic device. The Kerr effect provides switching of optical signal across the output ports of the Mach-Zehnder interferometer (MZI) with a high extinctionratio (ER). The intensity of the input signal is defined as different states of input logic. In addition, the presence and absence of an optical signal at output ports are used to set logic ‘1’ and ‘0’, respectively. Finally, four different logic functions including reversible Toffoli gate (TG), half adder (HA), NOR and XOR gate are realized through the proposed device. The device is analyzed through the finite difference time domain method in Opti-FDTD. Further, the analysis of basic elements is done in terms of ER, insertion loss (IL), and transmission efficiency.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"368-375"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10505019/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energy consumption is a primary concern in the computational process of heavy networks like Google, etc., where the key goal is to make them ultra-fast with low heat generation. Optical processing can play an important role in shrinking the heat energy and allow the system to work smoothly but beyond the Boltzmann limit of kTLn2. In the current epoch, optical reversible logic functions are greatly considered as a potential solution for minimizing heat dissipation or information loss and found applications in nanotechnology, logic circuits for biomedical applications, and so on. This work proposed the optical Kerr effect-based multifunctional plasmonic logic device. The Kerr effect provides switching of optical signal across the output ports of the Mach-Zehnder interferometer (MZI) with a high extinctionratio (ER). The intensity of the input signal is defined as different states of input logic. In addition, the presence and absence of an optical signal at output ports are used to set logic ‘1’ and ‘0’, respectively. Finally, four different logic functions including reversible Toffoli gate (TG), half adder (HA), NOR and XOR gate are realized through the proposed device. The device is analyzed through the finite difference time domain method in Opti-FDTD. Further, the analysis of basic elements is done in terms of ER, insertion loss (IL), and transmission efficiency.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.