{"title":"A Procedure for Testing for Tokyo Type 1 Open-Ended Evolution","authors":"Alastair Channon","doi":"10.1162/artl_a_00430","DOIUrl":null,"url":null,"abstract":"Tokyo Type 1 open-ended evolution (OEE) is a category of OEE that includes systems exhibiting the ongoing generation of adaptive novelty and ongoing growth in complexity. It can be considered as a necessary foundation for Tokyo Type 2 OEE (ongoing evolution of evolvability) and Tokyo Type 3 OEE (ongoing generation of major transitions). This article brings together five methods of analysis to form a procedure for testing for Tokyo Type 1 OEE. The procedure is presented as simply as possible, isolated from the complexities of any particular evolutionary system, and with a clear rationale for each step. In developing these steps, we also identify five key challenges in OEE. The last of these (achieving a higher order of complexity growth within a system exhibiting indefinitely scalable complexity) can be considered a grand challenge for Tokyo Type 1 OEE. Promising approaches to this grand challenge include also achieving one or both of Tokyo Types 2 and 3 OEE; this can be seen as one answer to why these other types of OEE are important, providing a unified view of OEE.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tokyo Type 1 open-ended evolution (OEE) is a category of OEE that includes systems exhibiting the ongoing generation of adaptive novelty and ongoing growth in complexity. It can be considered as a necessary foundation for Tokyo Type 2 OEE (ongoing evolution of evolvability) and Tokyo Type 3 OEE (ongoing generation of major transitions). This article brings together five methods of analysis to form a procedure for testing for Tokyo Type 1 OEE. The procedure is presented as simply as possible, isolated from the complexities of any particular evolutionary system, and with a clear rationale for each step. In developing these steps, we also identify five key challenges in OEE. The last of these (achieving a higher order of complexity growth within a system exhibiting indefinitely scalable complexity) can be considered a grand challenge for Tokyo Type 1 OEE. Promising approaches to this grand challenge include also achieving one or both of Tokyo Types 2 and 3 OEE; this can be seen as one answer to why these other types of OEE are important, providing a unified view of OEE.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.