Commensal Microbiota Regulate Aldosterone

Brittni N. Moore, Alexandra D. Medcalf, Rachel Q. Muir, Chudan Xu, Francine Z. Marques, Jennifer L. Pluznick
{"title":"Commensal Microbiota Regulate Aldosterone","authors":"Brittni N. Moore, Alexandra D. Medcalf, Rachel Q. Muir, Chudan Xu, Francine Z. Marques, Jennifer L. Pluznick","doi":"10.1152/ajprenal.00051.2024","DOIUrl":null,"url":null,"abstract":"The gut microbiome regulates many important host physiological processes associated with cardiovascular health and disease; however, the impact of the gut microbiome on aldosterone is unclear. Investigating whether gut microbiota regulate aldosterone can offer novel insights into how the microbiome affects blood pressure. In this study, we aimed to determine whether gut microbiota regulate host aldosterone. We employed enzyme-linked immunosorbent assays (ELISAs) to assess plasma aldosterone and plasma renin activity (PRA) in female and male mice in which gut microbiota are intact, suppressed, or absent. In addition, we examined urinary aldosterone. Our findings demonstrated that when the gut microbiota is suppressed following antibiotic treatment, there is an increase in plasma and urinary aldosterone in both female and male mice. In contrast, an increase in PRA is seen only in males. We also found that when gut microbiota are absent (germ-free mice), plasma aldosterone is significantly increased compared to conventional animals (in both females and males), but PRA is not. Understanding how gut microbiota influence aldosterone levels could provide valuable insights into the development and treatment of hypertension and/or primary aldosteronism. This knowledge may open new avenues for therapeutic interventions, such as probiotics or dietary modifications to help regulate blood pressure via microbiota-based changes to aldosterone.","PeriodicalId":7583,"journal":{"name":"American Journal of Physiology - Renal Physiology","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology - Renal Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00051.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome regulates many important host physiological processes associated with cardiovascular health and disease; however, the impact of the gut microbiome on aldosterone is unclear. Investigating whether gut microbiota regulate aldosterone can offer novel insights into how the microbiome affects blood pressure. In this study, we aimed to determine whether gut microbiota regulate host aldosterone. We employed enzyme-linked immunosorbent assays (ELISAs) to assess plasma aldosterone and plasma renin activity (PRA) in female and male mice in which gut microbiota are intact, suppressed, or absent. In addition, we examined urinary aldosterone. Our findings demonstrated that when the gut microbiota is suppressed following antibiotic treatment, there is an increase in plasma and urinary aldosterone in both female and male mice. In contrast, an increase in PRA is seen only in males. We also found that when gut microbiota are absent (germ-free mice), plasma aldosterone is significantly increased compared to conventional animals (in both females and males), but PRA is not. Understanding how gut microbiota influence aldosterone levels could provide valuable insights into the development and treatment of hypertension and/or primary aldosteronism. This knowledge may open new avenues for therapeutic interventions, such as probiotics or dietary modifications to help regulate blood pressure via microbiota-based changes to aldosterone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共生微生物群调节醛固酮
肠道微生物群调节许多与心血管健康和疾病相关的重要宿主生理过程;然而,肠道微生物群对醛固酮的影响尚不清楚。研究肠道微生物群是否能调节醛固酮可以为了解微生物群如何影响血压提供新的视角。在这项研究中,我们旨在确定肠道微生物群是否能调节宿主的醛固酮。我们采用酶联免疫吸附试验(ELISAs)来评估肠道微生物群完整、受抑制或缺失的雌性和雄性小鼠的血浆醛固酮和血浆肾素活性(PRA)。此外,我们还检测了尿醛固酮。我们的研究结果表明,当抗生素治疗后肠道微生物群受到抑制时,雌性和雄性小鼠血浆和尿液中的醛固酮都会增加。相反,只有雄性小鼠的 PRA 增加。我们还发现,当肠道微生物群缺失时(无菌小鼠),血浆醛固酮会比常规动物显著增加(雌性和雄性),但 PRA 不会增加。了解肠道微生物群如何影响醛固酮水平可为高血压和/或原发性醛固酮增多症的发病和治疗提供有价值的见解。这些知识可能会为治疗干预开辟新的途径,如益生菌或饮食调整,以帮助通过基于微生物群的醛固酮变化来调节血压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Local Angiotensin II Signaling in Bladder Function Spns1 is an iron transporter essential for megalin-dependent endocytosis. Glucagon receptor activation contributes to the development of kidney injury Establishment and characterization of a mouse model for studying kidney repair in diabetes MiR-199a-5p aggravates against renal ischemia-reperfusion and transplant injury by targeting AKAP1 to disrupt mitochondrial dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1