Julie S. Denslow, M. Tracy Johnson, Nancy L. Chaney, Emily C. Farrer, Carol C. Horvitz, Erin R. Nussbaum, Amanda L. Uowolo
{"title":"Strawberry guava invasion of a Hawaiian rainforest: Changing population patterns","authors":"Julie S. Denslow, M. Tracy Johnson, Nancy L. Chaney, Emily C. Farrer, Carol C. Horvitz, Erin R. Nussbaum, Amanda L. Uowolo","doi":"10.1111/btp.13324","DOIUrl":null,"url":null,"abstract":"<p>Strawberry guava (waiawī, <i>Psidium cattleyanum</i> Sabine, Myrtaceae) is a small tree invasive on oceanic islands where it may alter forest ecosystem processes and community structure. To better understand the dynamics of its invasion in Hawaiian rainforests in anticipation of the release of a biocontrol agent, we measured growth and abundance of vertical stems ≥0.5 cm DBH for 16 years (2005–2020) in <i>Metrosideros-Cibotium</i> rainforest on windward Hawai'i Island. Specifically, we compared the growth and abundance of both shoots (originating from seed or from the root mat) and sprouts (originating above ground from established stems) in four replicate study sites. Mean stem density increased from 9562 stems/ha in 2005 to 26,595 stems/ha in 2020, the majority of which were stems <2 cm DBH. Early in the invasion, both density and per capita recruitment of shoots was greater than that of sprouts, but as overall stem density increased, sprout abundance and recruitment came to surpass that of shoots. Relative growth rates among small stems <2 cm DBH declined over time for both shoots and sprouts, but relative growth rates of sprouts were consistently greater than that of shoots after the first 3 years. The capacity of strawberry guava to recruit from both shoots and sprouts facilitates its invasion of rainforest, its persistence in the forest understory, and its response to canopy opening. Strawberry guava thus poses a considerable risk of stand replacement for Hawaiian rainforests. Stand management will require perpetual efforts to control both seed production and sprouting.</p>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"56 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.13324","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Strawberry guava (waiawī, Psidium cattleyanum Sabine, Myrtaceae) is a small tree invasive on oceanic islands where it may alter forest ecosystem processes and community structure. To better understand the dynamics of its invasion in Hawaiian rainforests in anticipation of the release of a biocontrol agent, we measured growth and abundance of vertical stems ≥0.5 cm DBH for 16 years (2005–2020) in Metrosideros-Cibotium rainforest on windward Hawai'i Island. Specifically, we compared the growth and abundance of both shoots (originating from seed or from the root mat) and sprouts (originating above ground from established stems) in four replicate study sites. Mean stem density increased from 9562 stems/ha in 2005 to 26,595 stems/ha in 2020, the majority of which were stems <2 cm DBH. Early in the invasion, both density and per capita recruitment of shoots was greater than that of sprouts, but as overall stem density increased, sprout abundance and recruitment came to surpass that of shoots. Relative growth rates among small stems <2 cm DBH declined over time for both shoots and sprouts, but relative growth rates of sprouts were consistently greater than that of shoots after the first 3 years. The capacity of strawberry guava to recruit from both shoots and sprouts facilitates its invasion of rainforest, its persistence in the forest understory, and its response to canopy opening. Strawberry guava thus poses a considerable risk of stand replacement for Hawaiian rainforests. Stand management will require perpetual efforts to control both seed production and sprouting.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.