{"title":"Stretch‐tolerant PECVD gas barrier coatings for sustainable flexible packaging","authors":"Philipp Alizadeh, Jonas Franke, Rainer Dahlmann","doi":"10.1002/ppap.202400018","DOIUrl":null,"url":null,"abstract":"This study employs X‐ray photoelectron spectroscopy (XPS), thickness measurements, permeation analysis and laser scanning microscopy to analyse the stretch tolerance in dependence of the chemical composition and deposition rates of plasma‐enhanced chemical vapour deposition coatings. SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> and SiOCH coatings are deposited on polyethylene terephthalate film using a full factorial study design of three parameters (monomer/oxygen mass flow and pulse duration). They exhibit distinct differences, with the monomer mass flow emerging as a critical factor influencing deposition rates and stretch tolerance. SiOCH coatings demonstrate faster growth rates due to higher monomer flow. SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> coatings exhibit superior barrier performance. Stretch tolerance does not solely correlate with atomic composition, since a SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> coating with higher‐than‐predicted stretch tolerance was observed.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"49 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs X‐ray photoelectron spectroscopy (XPS), thickness measurements, permeation analysis and laser scanning microscopy to analyse the stretch tolerance in dependence of the chemical composition and deposition rates of plasma‐enhanced chemical vapour deposition coatings. SiOx and SiOCH coatings are deposited on polyethylene terephthalate film using a full factorial study design of three parameters (monomer/oxygen mass flow and pulse duration). They exhibit distinct differences, with the monomer mass flow emerging as a critical factor influencing deposition rates and stretch tolerance. SiOCH coatings demonstrate faster growth rates due to higher monomer flow. SiOx coatings exhibit superior barrier performance. Stretch tolerance does not solely correlate with atomic composition, since a SiOx coating with higher‐than‐predicted stretch tolerance was observed.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.