Jiayi Zhu , Bart Bolsterlee , Brian V.Y. Chow , Yang Song , Erik Meijering
{"title":"Hybrid dual mean-teacher network with double-uncertainty guidance for semi-supervised segmentation of magnetic resonance images","authors":"Jiayi Zhu , Bart Bolsterlee , Brian V.Y. Chow , Yang Song , Erik Meijering","doi":"10.1016/j.compmedimag.2024.102383","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-supervised learning has made significant progress in medical image segmentation. However, existing methods primarily utilize information from a single dimensionality, resulting in sub-optimal performance on challenging magnetic resonance imaging (MRI) data with multiple segmentation objects and anisotropic resolution. To address this issue, we present a Hybrid Dual Mean-Teacher (HD-Teacher) model with hybrid, semi-supervised, and multi-task learning to achieve effective semi-supervised segmentation. HD-Teacher employs a 2D and a 3D mean-teacher network to produce segmentation labels and signed distance fields from the hybrid information captured in both dimensionalities. This hybrid mechanism allows HD-Teacher to utilize features from 2D, 3D, or both dimensions as needed. Outputs from 2D and 3D teacher models are dynamically combined based on confidence scores, forming a single hybrid prediction with estimated uncertainty. We propose a hybrid regularization module to encourage both student models to produce results close to the uncertainty-weighted hybrid prediction to further improve their feature extraction capability. Extensive experiments of binary and multi-class segmentation conducted on three MRI datasets demonstrated that the proposed framework could (1) significantly outperform state-of-the-art semi-supervised methods (2) surpass a fully-supervised VNet trained on substantially more annotated data, and (3) perform on par with human raters on muscle and bone segmentation task. Code will be available at <span>https://github.com/ThisGame42/Hybrid-Teacher</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102383"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000600/pdfft?md5=7ce6bdbb1f79301198bf452b8d9fd71f&pid=1-s2.0-S0895611124000600-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised learning has made significant progress in medical image segmentation. However, existing methods primarily utilize information from a single dimensionality, resulting in sub-optimal performance on challenging magnetic resonance imaging (MRI) data with multiple segmentation objects and anisotropic resolution. To address this issue, we present a Hybrid Dual Mean-Teacher (HD-Teacher) model with hybrid, semi-supervised, and multi-task learning to achieve effective semi-supervised segmentation. HD-Teacher employs a 2D and a 3D mean-teacher network to produce segmentation labels and signed distance fields from the hybrid information captured in both dimensionalities. This hybrid mechanism allows HD-Teacher to utilize features from 2D, 3D, or both dimensions as needed. Outputs from 2D and 3D teacher models are dynamically combined based on confidence scores, forming a single hybrid prediction with estimated uncertainty. We propose a hybrid regularization module to encourage both student models to produce results close to the uncertainty-weighted hybrid prediction to further improve their feature extraction capability. Extensive experiments of binary and multi-class segmentation conducted on three MRI datasets demonstrated that the proposed framework could (1) significantly outperform state-of-the-art semi-supervised methods (2) surpass a fully-supervised VNet trained on substantially more annotated data, and (3) perform on par with human raters on muscle and bone segmentation task. Code will be available at https://github.com/ThisGame42/Hybrid-Teacher.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.