TQGDNet: Coronary artery calcium deposit detection on computed tomography

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2025-02-06 DOI:10.1016/j.compmedimag.2025.102503
Wei-Chien Wang , Christopher Yu , Euijoon Ahn , Shahab Pathan , Kazuaki Negishi , Jinman Kim
{"title":"TQGDNet: Coronary artery calcium deposit detection on computed tomography","authors":"Wei-Chien Wang ,&nbsp;Christopher Yu ,&nbsp;Euijoon Ahn ,&nbsp;Shahab Pathan ,&nbsp;Kazuaki Negishi ,&nbsp;Jinman Kim","doi":"10.1016/j.compmedimag.2025.102503","DOIUrl":null,"url":null,"abstract":"<div><div>Coronary artery disease (CAD) continues to be a leading global cause of cardiovascular related mortality. The scoring of coronary artery calcium (CAC) using computer tomography (CT) images is a diagnostic instrument for evaluating the risk of asymptomatic individuals prone to atherosclerotic cardiovascular disease. State-of-the-art automated CAC scoring methods rely on large annotated datasets to train convolutional neural network (CNN) models. However, these methods do not integrate features across different levels and layers of the CNN, particularly in the lower layers where important information regarding small calcium regions are present. In this study, we propose a new CNN model specifically designed to effectively capture features associated with small regions and their surrounding areas in low-contrast CT images. Our model integrates a specifically designed low-contrast detection module and two fusion modules focusing on the lower layers of the network to connect more deeper and wider neurons (or nodes) across multiple adjacent levels. Our first module, called ThrConvs, includes three convolution blocks tailored to detecting objects in images characterized by low contrast. Following this, two fusion modules are introduced: (i) Queen-fusion (Qf), which introduces a cross-scale feature method to fuse features from multiple adjacent levels and layers and, (ii) lower-layer Gather-and-Distribute (GD) module, which focuses on learning comprehensive features associated with small-sized calcium deposits and their surroundings. We demonstrate superior performance of our model using the public OrCaScore dataset, encompassing 269 calcium deposits, surpassing the capabilities of previous state-of-the-art works. We demonstrate the enhanced performance of our approach, achieving a notable 2.3–3.6 % improvement in mean Pixel Accuracy (mPA) on both the private Concord dataset and the public OrCaScore dataset, surpassing the capabilities of established detection methods.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"121 ","pages":"Article 102503"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000126","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coronary artery disease (CAD) continues to be a leading global cause of cardiovascular related mortality. The scoring of coronary artery calcium (CAC) using computer tomography (CT) images is a diagnostic instrument for evaluating the risk of asymptomatic individuals prone to atherosclerotic cardiovascular disease. State-of-the-art automated CAC scoring methods rely on large annotated datasets to train convolutional neural network (CNN) models. However, these methods do not integrate features across different levels and layers of the CNN, particularly in the lower layers where important information regarding small calcium regions are present. In this study, we propose a new CNN model specifically designed to effectively capture features associated with small regions and their surrounding areas in low-contrast CT images. Our model integrates a specifically designed low-contrast detection module and two fusion modules focusing on the lower layers of the network to connect more deeper and wider neurons (or nodes) across multiple adjacent levels. Our first module, called ThrConvs, includes three convolution blocks tailored to detecting objects in images characterized by low contrast. Following this, two fusion modules are introduced: (i) Queen-fusion (Qf), which introduces a cross-scale feature method to fuse features from multiple adjacent levels and layers and, (ii) lower-layer Gather-and-Distribute (GD) module, which focuses on learning comprehensive features associated with small-sized calcium deposits and their surroundings. We demonstrate superior performance of our model using the public OrCaScore dataset, encompassing 269 calcium deposits, surpassing the capabilities of previous state-of-the-art works. We demonstrate the enhanced performance of our approach, achieving a notable 2.3–3.6 % improvement in mean Pixel Accuracy (mPA) on both the private Concord dataset and the public OrCaScore dataset, surpassing the capabilities of established detection methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Prior knowledge-based multi-task learning network for pulmonary nodule classification Automatic Joint Lesion Detection by enhancing local feature interaction TQGDNet: Coronary artery calcium deposit detection on computed tomography CGNet: Few-shot learning for Intracranial Hemorrhage Segmentation Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1