{"title":"Molecular characterization of GPR84 in domestic cats","authors":"Ichiro Yamamoto , Masaki Michishita , Koki Fujita , Tamami Sakai , Noriyasu Sasaki , Koh Kawasumi","doi":"10.1016/j.ygcen.2024.114520","DOIUrl":null,"url":null,"abstract":"<div><p>G protein-coupled receptor 84 (GPR84) was cloned as an orphan receptor, and medium-chain fatty acids were then revealed as endogenous ligands. GPR84 is expressed in immune cells and is believed to protect liver function from lipotoxicity caused by overeating and high-fat diet intake. This study aimed to present the molecular characterization of GPR84 in domestic cats. The deduced amino acid sequence of the feline GPR84 shows high sequence homology (83–89 %) with the orthologues from other mammalians by cDNA cloning of feline GPR84. Remarkably high mRNA expression was observed in the bone marrow by Q-PCR analysis. The inhibition of intracellular cAMP concentration was observed in cells transfected with feline GPR84 and treated with medium-chain fatty acids. Immunostaining of GPR84 and free fatty acid receptor 2 (FFAR2)/GPR43 in the bone marrow, where high mRNA expression was observed, showed reactions in macrophages and myeloid cells. To clarify whether the receptor formed homo/hetero-merization, GPR84 and FFARs were analyzed using Nano-Luc binary technology and NanoLuc bioluminescence resonance energy transfer technologies, which revealed that GPR84 formed more heteromers with FFAR2 than homomers with each other. In addition, when GPR84 and FFAR2/GPR43 were cotransfected in the cell, their localization on the cell membrane was reduced compared with that when single receptors were transfected. These results indicated that GPR84 is a functional receptor protein that is expressed in cat tissues and may have a protein–protein interaction with FFAR2/GPR43 on the cell membrane.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"353 ","pages":"Article 114520"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024000819/pdfft?md5=92ca0f8f42e1aabd466b8edf2572ad02&pid=1-s2.0-S0016648024000819-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024000819","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
G protein-coupled receptor 84 (GPR84) was cloned as an orphan receptor, and medium-chain fatty acids were then revealed as endogenous ligands. GPR84 is expressed in immune cells and is believed to protect liver function from lipotoxicity caused by overeating and high-fat diet intake. This study aimed to present the molecular characterization of GPR84 in domestic cats. The deduced amino acid sequence of the feline GPR84 shows high sequence homology (83–89 %) with the orthologues from other mammalians by cDNA cloning of feline GPR84. Remarkably high mRNA expression was observed in the bone marrow by Q-PCR analysis. The inhibition of intracellular cAMP concentration was observed in cells transfected with feline GPR84 and treated with medium-chain fatty acids. Immunostaining of GPR84 and free fatty acid receptor 2 (FFAR2)/GPR43 in the bone marrow, where high mRNA expression was observed, showed reactions in macrophages and myeloid cells. To clarify whether the receptor formed homo/hetero-merization, GPR84 and FFARs were analyzed using Nano-Luc binary technology and NanoLuc bioluminescence resonance energy transfer technologies, which revealed that GPR84 formed more heteromers with FFAR2 than homomers with each other. In addition, when GPR84 and FFAR2/GPR43 were cotransfected in the cell, their localization on the cell membrane was reduced compared with that when single receptors were transfected. These results indicated that GPR84 is a functional receptor protein that is expressed in cat tissues and may have a protein–protein interaction with FFAR2/GPR43 on the cell membrane.
期刊介绍:
General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.