AMP-activated protein kinase can be allosterically activated by ADP but AMP remains the key activating ligand

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Journal Pub Date : 2024-04-24 DOI:10.1042/bcj20240082
Hawley, Simon A., Russell, Fiona M., Hardie, D. Grahame
{"title":"AMP-activated protein kinase can be allosterically activated by ADP but AMP remains the key activating ligand","authors":"Hawley, Simon A., Russell, Fiona M., Hardie, D. Grahame","doi":"10.1042/bcj20240082","DOIUrl":null,"url":null,"abstract":"The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2− (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2β2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20240082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2− (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2β2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMP 激活的蛋白激酶可被 ADP 异源激活,但 AMP 仍是关键的激活配体
AMP激活蛋白激酶(AMPK)是细胞能量状态的传感器。当ADP:ATP和/或AMP:ATP比率增加时(能量不足信号),AMPK被激活,从而恢复能量平衡。AMPK-γ 亚基上的三个 CBS 重复序列(CBS1、CBS3、CBS4)中的一个或多个与 AMPK 结合,通过三种互补机制激活激酶复合物:(i) 通过上游激酶 LKB1 促进 α 亚基 Thr172 磷酸化;(ii) 防止 Thr172 去磷酸化;(iii) 异位激活。令人惊讶的是,据报道结合 ADP 可模拟前两种效应,但不能模拟第三种效应。我们现在的研究表明,在 Mg.ATP2- 的生理相关浓度下(高于标准测定中使用的浓度),ADP 结合确实会导致异源活化。然而,ADP 只引起适度的活化,因为(与 AMP 不同)在浓度刚刚超过活化变得明显时,ADP 开始在催化位点引起竞争性抑制。我们的结果使人对 ADP 作用的生理相关性产生怀疑,并表明 AMP 才是体内的主要激活剂。我们还对人α2β2γ1复合体的三个γ亚基 CBS 重复位点上参与结合腺嘌呤核苷酸的疏水残基进行了突变,并研究了它们对 AMP 和 ADP 调节的影响。CBS3 位点的突变对所有三种 AMP 激活机制的影响最大,尤其是在较低的 ATP 浓度下,而 CBS4 的突变则降低了对 AMP 的敏感性。这三个位点似乎都是 ADP 异源激活所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
期刊最新文献
Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain. Epigenetics and alternative splicing in cancer: old enemies, new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1