首页 > 最新文献

Biochemical Journal最新文献

英文 中文
USP10 deubiquitinates and stabilizes CD44 leading to enhanced breast cancer cell proliferation, stemness and metastasis. USP10 可使 CD44 去泛素化和稳定化,从而增强乳腺癌细胞的增殖、干性和转移。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1042/BCJ20240611
Arppita Sethi, Shivkant Mishra, Vishal Upadhyay, Parul Dubey, Shumaila Siddiqui, Anil Kumar Singh, Sangita Chaowdhury, Swati Srivastava, Pragya Srivasatava, Prasannajit Sahoo, Madan Lal Brahma Bhatt, Anand Mishra, Arun Kumar Trivedi

Despite extensive research, strategies to effectively combat breast cancer stemness and achieve a definitive cure remains elusive. CD44, a well-defined cancer stem cell marker is reported to promote breast cancer tumorigenesis, metastasis, and chemoresistance. However, mechanisms leading to its enhanced expression and function is poorly understood. Here, we demonstrate that USP10 positively regulates CD44 protein levels and its downstream actions. While USP10 depletion prominently downregulates CD44 protein levels and functions, its overexpression significantly enhances CD44 protein levels, leading to enhanced cluster tumor cell formation, stemness, and metastasis in breast cancer cells both in vitro and ex vivo in primary human breast tumor cells. USP10 interacts with CD44 and stabilizes it through deubiquitination both in breast cancer cell lines and human breast cancer-derived primary tumor cells. Stabilized CD44 shows enhanced interaction with cytoskeleton proteins Ezrin/Radixin/Moesin and potently activates PDGFRβ/STAT3 signalling which are involved in promoting CSC traits. Using USP10 stably expressing 4T1 cells, we further demonstrate that the USP10-CD44 axis potently promotes tumorigenicity in vivo in mice, while simultaneous depletion of CD44 in these cells renders them ineffective. In line with these findings, we further showed that inhibition of USP10 either through RNAi or the pharmacological inhibitor Spautin-1 significantly mitigated CD44 levels and its downstream function ex vivo in primary breast tumor cells. Finally, we demonstrated that primary breast tumor cells are more susceptible to chemotherapy when co-treated with USP10 inhibitor indicating that the USP10-CD44 axis could be an attractive therapeutic target in combination with chemotherapy in CD44 expressing breast cancers.

尽管进行了广泛的研究,但有效对抗乳腺癌干细胞并实现彻底治愈的策略仍遥遥无期。据报道,CD44是一种定义明确的癌症干细胞标记物,可促进乳腺癌的肿瘤发生、转移和化疗耐药性。然而,导致其表达和功能增强的机制却鲜为人知。在这里,我们证明了 USP10 能正向调节 CD44 蛋白水平及其下游作用。USP10 的耗竭会显著下调 CD44 蛋白水平和功能,而它的过表达则会显著提高 CD44 蛋白水平,导致乳腺癌细胞在体外和体内原发性人类乳腺肿瘤细胞中的簇状肿瘤细胞形成、干性和转移能力增强。USP10 与 CD44 相互作用,并在乳腺癌细胞系和源于人类乳腺癌的原代肿瘤细胞中通过去泛素化使其稳定。稳定的 CD44 与细胞骨架蛋白 Ezrin/Radixin/Moesin 的相互作用增强,并能有效激活 PDGFRβ/STAT3 信号,这些信号参与促进 CSC 特性。利用稳定表达 USP10 的 4T1 细胞,我们进一步证明 USP10-CD44 轴能有效促进小鼠体内的致瘤性,而同时消耗这些细胞中的 CD44 则会使其失效。与这些发现相一致,我们进一步发现,通过 RNAi 或药理抑制剂 Spautin-1 抑制 USP10 能显著减轻原代乳腺肿瘤细胞体内 CD44 的水平及其下游功能。最后,我们证明了原发性乳腺肿瘤细胞在与 USP10 抑制剂联合治疗时更容易受到化疗的影响,这表明 USP10-CD44 轴可能是 CD44 表达乳腺癌与化疗相结合的一个有吸引力的治疗靶点。
{"title":"USP10 deubiquitinates and stabilizes CD44 leading to enhanced breast cancer cell proliferation, stemness and metastasis.","authors":"Arppita Sethi, Shivkant Mishra, Vishal Upadhyay, Parul Dubey, Shumaila Siddiqui, Anil Kumar Singh, Sangita Chaowdhury, Swati Srivastava, Pragya Srivasatava, Prasannajit Sahoo, Madan Lal Brahma Bhatt, Anand Mishra, Arun Kumar Trivedi","doi":"10.1042/BCJ20240611","DOIUrl":"https://doi.org/10.1042/BCJ20240611","url":null,"abstract":"<p><p>Despite extensive research, strategies to effectively combat breast cancer stemness and achieve a definitive cure remains elusive. CD44, a well-defined cancer stem cell marker is reported to promote breast cancer tumorigenesis, metastasis, and chemoresistance. However, mechanisms leading to its enhanced expression and function is poorly understood. Here, we demonstrate that USP10 positively regulates CD44 protein levels and its downstream actions. While USP10 depletion prominently downregulates CD44 protein levels and functions, its overexpression significantly enhances CD44 protein levels, leading to enhanced cluster tumor cell formation, stemness, and metastasis in breast cancer cells both in vitro and ex vivo in primary human breast tumor cells. USP10 interacts with CD44 and stabilizes it through deubiquitination both in breast cancer cell lines and human breast cancer-derived primary tumor cells. Stabilized CD44 shows enhanced interaction with cytoskeleton proteins Ezrin/Radixin/Moesin and potently activates PDGFRβ/STAT3 signalling which are involved in promoting CSC traits. Using USP10 stably expressing 4T1 cells, we further demonstrate that the USP10-CD44 axis potently promotes tumorigenicity in vivo in mice, while simultaneous depletion of CD44 in these cells renders them ineffective. In line with these findings, we further showed that inhibition of USP10 either through RNAi or the pharmacological inhibitor Spautin-1 significantly mitigated CD44 levels and its downstream function ex vivo in primary breast tumor cells. Finally, we demonstrated that primary breast tumor cells are more susceptible to chemotherapy when co-treated with USP10 inhibitor indicating that the USP10-CD44 axis could be an attractive therapeutic target in combination with chemotherapy in CD44 expressing breast cancers.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP. 关于 TRAP 底物结合蛋白的功能:异蛋氨酸特异性结合蛋白 IseP。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1042/BCJ20240540
Michael Charles Newton-Vesty, Michael John Currie, James Sandwell Davies, Santosh Panjikar, Ashish Sethi, Andrew E Whitten, Zachary David Tillett, David Michael Wood, Joshua D Wright, Michael James Love, Timothy M Allison, Sam A Jamieson, Peter Mace, Rachel Aimee North, Renwick Cj Dobson

Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry (ITC), KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared to other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.

细菌通过进化机制来争夺有限的资源并在新的环境中生存。在这里,我们研究了硫酸盐还原细菌 Oleidesulfovibrio alaskensis 的异硫氨酸输入机制。由于硫化氢的产生,脱硫弧菌对异硫氨酸的分解与人类疾病有关,并具有工业应用潜力。阿拉斯加弧菌(O. alaskensis)利用不依赖 ATP 的三方质外(TRAP)转运体(OaIsePQM)导入异硫氨酸,该转运体依赖底物结合蛋白(OaIseP)清除异硫氨酸并将其输送到膜转运体成分(OaIseQM)以导入细胞。我们通过等温滴定量热法(ITC)测定了异硫氨酸与 OaIseP 的结合亲和力,KD = 0.95 µM (68% CI = 0.6-1.4 µM),与其他 TRAP 底物结合蛋白相比较弱。我们获得了 OaIseP 不含配体和与异硫酸盐结合的 X 射线晶体结构,结果表明,在异硫酸盐存在的情况下,OaIseP 采用封闭构象,蛋白质的两个结构域折叠在底物上。我们偶然发现了两种晶体形式,它们的异硫酸盐结合位点结合了含磺酸盐的缓冲液(HEPES 和 MES)。不过,这些晶体并没有引起结构域关闭,这可能是因为配体的尺寸较大。总之,我们的数据阐明了 TRAP 底物结合蛋白如何结合含磺酸盐底物而非典型的含羧酸盐底物的分子细节。这些结果可为未来开发针对 TRAP 转运体的抗生素提供信息,并为 TRAP 转运体底物结合蛋白的蛋白质工程学提供启示。
{"title":"On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP.","authors":"Michael Charles Newton-Vesty, Michael John Currie, James Sandwell Davies, Santosh Panjikar, Ashish Sethi, Andrew E Whitten, Zachary David Tillett, David Michael Wood, Joshua D Wright, Michael James Love, Timothy M Allison, Sam A Jamieson, Peter Mace, Rachel Aimee North, Renwick Cj Dobson","doi":"10.1042/BCJ20240540","DOIUrl":"10.1042/BCJ20240540","url":null,"abstract":"<p><p>Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry (ITC), KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared to other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macromolecular crowding and bicarbonate enhance the hydrogen peroxide-induced inactivation of glyceraldehyde-3-phosphate dehydrogenase. 大分子拥挤和碳酸氢盐会增强过氧化氢诱导的甘油醛-3-磷酸脱氢酶失活。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1042/BCJ20240597
Rebecca H J Bloemen, Rafael Radi, Michael J Davies, Eduardo Fuentes-Lemus

The active site Cys residue in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is sensitive to oxidation by hydrogen peroxide (H2O2), with this resulting in enzyme inactivation. This re-routes the carbon flux from glycolysis to the pentose phosphate pathway favoring the formation of NADPH and synthetic intermediates required for antioxidant defense and repair systems. Consequently, GAPDH inactivation serves as a redox switch for metabolic adaptation under conditions of oxidative stress. However, there is a major knowledge gap as to how GAPDH is efficiently oxidized and inactivated, when the increase in intracellular H2O2 is modest, and there is a high concentration of alternative (non-signaling) thiols and efficient peroxide removing systems. We have therefore explored whether GAPDH inactivation is enhanced by two factors of in vivo relevance: macromolecular crowding, an inherent property of biological environments, and the presence of bicarbonate, an abundant biological buffer. Bicarbonate is already known to modulate H2O2 metabolism via formation of peroxymonocarbonate. GAPDH activity was assessed in experiments with low doses of H2O2 under both dilute and crowded conditions (induced by inert high molecular mass polymers and small molecules), in both the absence and presence of 25 mM sodium bicarbonate. H2O2-induced inactivation of GAPDH was observed to be significantly enhanced under macromolecular crowding conditions, with bicarbonate having an additional effect. These data strongly suggest that these two factors are of major importance in redox switch mechanisms involving GAPDH (and possibly other thiol-dependent systems) within the cellular environment.

甘油醛-3-磷酸脱氢酶(GAPDH)的活性位点 Cys 残基对过氧化氢(H2O2)的氧化很敏感,这会导致酶失活。这使得碳通量从糖酵解重新转向磷酸戊糖途径,有利于形成 NADPH 和抗氧化防御与修复系统所需的合成中间体。因此,GAPDH 失活是氧化应激条件下代谢适应的氧化还原开关。然而,对于当细胞内 H2O2 的增加量不大,并且存在高浓度的替代(非信号)硫醇和有效的过氧化物清除系统时,GAPDH 是如何被有效氧化和失活的,我们还存在很大的知识空白。因此,我们探讨了 GAPDH 失活是否会因两个与体内相关的因素而增强:大分子拥挤(生物环境的固有特性)和碳酸氢盐(一种丰富的生物缓冲剂)的存在。已知碳酸氢盐可通过形成过氧碳酸氢盐调节 H2O2 代谢。在 25 mM 碳酸氢钠不存在或存在的情况下,在稀释和拥挤条件下(由惰性高分子聚合物和小分子诱导)使用低剂量 H2O2 进行实验,评估 GAPDH 的活性。据观察,在大分子拥挤条件下,H2O2-诱导的 GAPDH 失活作用明显增强,碳酸氢钠具有额外的作用。这些数据有力地表明,这两个因素在细胞环境中涉及 GAPDH(可能还有其他依赖硫醇的系统)的氧化还原转换机制中非常重要。
{"title":"Macromolecular crowding and bicarbonate enhance the hydrogen peroxide-induced inactivation of glyceraldehyde-3-phosphate dehydrogenase.","authors":"Rebecca H J Bloemen, Rafael Radi, Michael J Davies, Eduardo Fuentes-Lemus","doi":"10.1042/BCJ20240597","DOIUrl":"https://doi.org/10.1042/BCJ20240597","url":null,"abstract":"<p><p>The active site Cys residue in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is sensitive to oxidation by hydrogen peroxide (H2O2), with this resulting in enzyme inactivation. This re-routes the carbon flux from glycolysis to the pentose phosphate pathway favoring the formation of NADPH and synthetic intermediates required for antioxidant defense and repair systems. Consequently, GAPDH inactivation serves as a redox switch for metabolic adaptation under conditions of oxidative stress. However, there is a major knowledge gap as to how GAPDH is efficiently oxidized and inactivated, when the increase in intracellular H2O2 is modest, and there is a high concentration of alternative (non-signaling) thiols and efficient peroxide removing systems. We have therefore explored whether GAPDH inactivation is enhanced by two factors of in vivo relevance: macromolecular crowding, an inherent property of biological environments, and the presence of bicarbonate, an abundant biological buffer. Bicarbonate is already known to modulate H2O2 metabolism via formation of peroxymonocarbonate. GAPDH activity was assessed in experiments with low doses of H2O2 under both dilute and crowded conditions (induced by inert high molecular mass polymers and small molecules), in both the absence and presence of 25 mM sodium bicarbonate. H2O2-induced inactivation of GAPDH was observed to be significantly enhanced under macromolecular crowding conditions, with bicarbonate having an additional effect. These data strongly suggest that these two factors are of major importance in redox switch mechanisms involving GAPDH (and possibly other thiol-dependent systems) within the cellular environment.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Methylglyoxal-Induced Glycation Stress: The Protective Role of Iron, Copper, and Manganese Coordination Compounds in Saccharomyces cerevisiae. 减轻甲基乙二醛诱导的糖化应激:铁、铜和锰配位化合物在酿酒酵母中的保护作用
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-13 DOI: 10.1042/BCJ20240390
Maria Eduarda Sant'Ana Faria do Espírito Santo, Bárbara Filgueiras Frascino, Larissa M M Mattos, Daniele Cabral Pires, Simone S C de Oliveira, Lucas B Menezes, Bernardo Ferreira Braz, Ricardo Erthal Santelli, André Santos, Adolfo Horn Junior, Christiane Fernandes, Marcos Pereira

Glycation-induced stress (G-iS) is a physiological phenomenon that leads to the formation of advanced glycation end-products (AGEs), triggering detrimental effects such as oxidative stress, inflammation, and damage to intracellular structures, tissues, and organs. This process is particularly relevant because it has been associated with various human pathologies, including cancer, neurodegenerative diseases, and diabetes. As therapeutic alternatives, coordination compounds with antioxidant activity show promising potential due to their versatility in attenuating oxidative stress and inflammation. Herein, we investigated the antioxidant-related protective potential of a series of complexes: [Cu(II)(BMPA)Cl2] (1), [Fe(III)(BMPA)Cl3] (2), and [Cl(BMPA)MnII-(μ-Cl)2-MnII(BMPA)-(μ-Cl)- MnII(BMPA)(Cl)2]•5H2O  (3), all synthesized with the ligand bis-(2-pyridylmethyl)amine (BMPA) in Saccharomyces cerevisiae exposed to G-iS caused by methylglyoxal (MG). Pre- treatment with complexes 1 - 3 proved highly effective, increasing yeast tolerance to G-iS and attenuating mitochondrial dysfunction. This observed phenotype appears to result from a reduction in intracellular oxidation, lipid peroxidation levels, and glycation. Additionally, an increase in the activity of the antioxidant enzymes superoxide dismutase and catalase was observed following treatment with complexes 1 - 3. Notably, although complexes 1 - 3 provided significant protection against oxidative stress induced by H2O2 and menadione, their protective role was more effective against MG-induced glycation stress. Our results indicate that these complexes possess both antiglycation and antioxidant properties, warranting further investigation as potential interventions for mitigating glycation and oxidative stress-related pathologies.

糖化诱导应激(G-iS)是一种生理现象,它导致高级糖化终产物(AGEs)的形成,引发氧化应激、炎症以及细胞内结构、组织和器官损伤等有害效应。这一过程与癌症、神经退行性疾病和糖尿病等多种人类病症相关,因此尤为重要。作为治疗的替代品,具有抗氧化活性的配位化合物因其在减轻氧化应激和炎症方面的多功能性而显示出巨大的潜力。在此,我们研究了一系列配合物的抗氧化保护潜力:[Cu(II)(BMPA)Cl2](1)、[Fe(III)(BMPA)Cl3](2)和[Cl(BMPA)MnII-(μ-Cl)2-MnII(BMPA)-(μ-Cl)-MnII(BMPA)(Cl)2]-5H2O(3)、都是在暴露于由甲基乙二醛(MG)引起的 G-iS 的酿酒酵母中与配体双(2-吡啶基甲基)胺(BMPA)合成的。事实证明,用复合物 1 - 3 进行预处理非常有效,可提高酵母对 G-iS 的耐受性并减轻线粒体功能障碍。这种观察到的表型似乎是细胞内氧化、脂质过氧化水平和糖化减少的结果。值得注意的是,虽然复合物 1 - 3 对 H2O2 和甲萘醌诱导的氧化应激有显著的保护作用,但它们对 MG 诱导的糖化应激的保护作用更为有效。我们的研究结果表明,这些复合物同时具有抗糖化和抗氧化特性,值得进一步研究,以作为减轻糖化和氧化应激相关病症的潜在干预措施。
{"title":"Mitigating Methylglyoxal-Induced Glycation Stress: The Protective Role of Iron, Copper, and Manganese Coordination Compounds in Saccharomyces cerevisiae.","authors":"Maria Eduarda Sant'Ana Faria do Espírito Santo, Bárbara Filgueiras Frascino, Larissa M M Mattos, Daniele Cabral Pires, Simone S C de Oliveira, Lucas B Menezes, Bernardo Ferreira Braz, Ricardo Erthal Santelli, André Santos, Adolfo Horn Junior, Christiane Fernandes, Marcos Pereira","doi":"10.1042/BCJ20240390","DOIUrl":"https://doi.org/10.1042/BCJ20240390","url":null,"abstract":"<p><p>Glycation-induced stress (G-iS) is a physiological phenomenon that leads to the formation of advanced glycation end-products (AGEs), triggering detrimental effects such as oxidative stress, inflammation, and damage to intracellular structures, tissues, and organs. This process is particularly relevant because it has been associated with various human pathologies, including cancer, neurodegenerative diseases, and diabetes. As therapeutic alternatives, coordination compounds with antioxidant activity show promising potential due to their versatility in attenuating oxidative stress and inflammation. Herein, we investigated the antioxidant-related protective potential of a series of complexes: [Cu(II)(BMPA)Cl2] (1), [Fe(III)(BMPA)Cl3] (2), and [Cl(BMPA)MnII-(μ-Cl)2-MnII(BMPA)-(μ-Cl)- MnII(BMPA)(Cl)2]•5H2O  (3), all synthesized with the ligand bis-(2-pyridylmethyl)amine (BMPA) in Saccharomyces cerevisiae exposed to G-iS caused by methylglyoxal (MG). Pre- treatment with complexes 1 - 3 proved highly effective, increasing yeast tolerance to G-iS and attenuating mitochondrial dysfunction. This observed phenotype appears to result from a reduction in intracellular oxidation, lipid peroxidation levels, and glycation. Additionally, an increase in the activity of the antioxidant enzymes superoxide dismutase and catalase was observed following treatment with complexes 1 - 3. Notably, although complexes 1 - 3 provided significant protection against oxidative stress induced by H2O2 and menadione, their protective role was more effective against MG-induced glycation stress. Our results indicate that these complexes possess both antiglycation and antioxidant properties, warranting further investigation as potential interventions for mitigating glycation and oxidative stress-related pathologies.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. 研究肌肉萎缩症的层粘连A Ig折叠结构域突变体的不同结构组织和基因表达调控网络。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1042/BCJ20240474
Subarna Dutta, Vikas Kumar, Arnab Barua, Madavan Vasudevan

Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies.In the first part of this report, we identified the in-vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labelling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.

作为细胞核的主要结构成分,绵蛋白形成了一个蛋白网状结构。染色质蛋白及其相互作用体是整个细胞核染色质组织的决定因素。然而,层粘连蛋白 A 是如何促进异染色质的分布和平衡染色质的,又是如何重新定位表观遗传标记以形成染色质状态的,这些问题仍未得到很好的界定,因此很难就层粘连蛋白 A 介导的肌肉萎缩症的预后得出结论。在本报告的第一部分,我们确定了全长层粘连蛋白 A 的体外组织是由两种有据可查的 Ig LMNA 突变(R453W 和 W514R)引起的。我们进一步证明,这两种片层 A/C突变细胞主要表达核质聚集体。通过标记表观遗传学的特定标记物,可以将板层片 A 突变与表观遗传学机制联系起来。除了表观遗传学机制,我们的蛋白质组学研究还追踪了转录调节因子、RNA合成和加工蛋白、蛋白质翻译元件和翻译后修饰的不同表达。这些数据表明,其他蛋白质靶向细胞核的过程受到了严重干扰。
{"title":"Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy.","authors":"Subarna Dutta, Vikas Kumar, Arnab Barua, Madavan Vasudevan","doi":"10.1042/BCJ20240474","DOIUrl":"https://doi.org/10.1042/BCJ20240474","url":null,"abstract":"<p><p>Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies.In the first part of this report, we identified the in-vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labelling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. 通过溶液核磁共振探索 N-myc 转录激活结构域的动力学和相互作用。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 DOI: 10.1042/BCJ20240248
Ewa Rejnowicz, Matthew Batchelor, Eoin Leen, Mohd Syed Ahangar, Selena G Burgess, Mark W Richards, Arnout P Kalverda, Richard Bayliss

Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.

Myc 蛋白是对细胞增殖至关重要的转录因子。它们有一个介导 Max 和 DNA 结合的 C 端结构域,以及一个 N 端无序区,最终形成转录激活结构域(TAD)。TAD 参与了许多蛋白质与蛋白质之间的相互作用,特别是与通过泛素蛋白酶体系统促进稳定性(Aurora-A)或降解(ERK1、GSK3)的激酶的相互作用。我们利用核磁共振(NMR)光谱对 N-myc TAD 的结构、动力学和相互作用进行了探究,并对其骨架进行了完整的分配。化学位移分析表明,N-myc 有两个具有明显螺旋倾向的区域:Trp77-Glu86 和 Ala122-Glu132。与 TAD 的其他部分相比,这些区域的 ps-ns 运动也更受限制,而且与磷酸二聚体一起,具有相对较高的横向 (R2) 15N 松弛率,这表明时间尺度动力学和/或化学交换较慢。总之,这些特征表明整个 TAD 内部或与结合伙伴的结构和相互作用具有不同的倾向性。对 N-myc 和 Aurora-A 之间相互作用的溶液研究发现了一个以前未曾描述过的结合位点。利用核磁共振分析了 ERK1 和 GSK3 对 N-myc 顺序磷酸化的特异性和动力学特征,结果表明磷酸二聚体之外的结构没有发生显著变化。当磷酸化二聚体被双重磷酸化时,N-myc与Fbxw7-Skp1复合物形成了强有力的相互作用,但核磁共振绘制的相互作用图显示了一个更广泛的界面。我们的研究提供了有关 N-myc TAD 动力学和骨架分配的基本见解,这将为今后研究这种关键肿瘤蛋白的结构、动力学、相互作用和翻译后修饰调控提供基础。
{"title":"Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy.","authors":"Ewa Rejnowicz, Matthew Batchelor, Eoin Leen, Mohd Syed Ahangar, Selena G Burgess, Mark W Richards, Arnout P Kalverda, Richard Bayliss","doi":"10.1042/BCJ20240248","DOIUrl":"10.1042/BCJ20240248","url":null,"abstract":"<p><p>Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1535-1556"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of cell states on heterochromatin dynamics. 细胞状态对异染色质动态的影响
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 DOI: 10.1042/bcj20240139
Abby Trouth,Giovana M B Veronezi,Srinivas Ramachandran
Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.
当细胞处于发育、活动和疾病的不同阶段时,建立、维持和去除与异染色质相关的组蛋白翻译后修饰对于塑造基因组结构和功能至关重要。抑制性染色质景观的动态调控已在几种关键细胞状态(生殖细胞、活化的免疫细胞、活跃的复制细胞和静止细胞)中得到证实,其基本机制存在显著差异。在这里,我们将讨论这些不同背景下的细胞状态在引导和维持所观察到的染色质景观中的作用。这些研究揭示了异染色质结构对细胞存在的功能环境的高度响应,反过来,它们对细胞的稳定特性也有贡献。
{"title":"The impact of cell states on heterochromatin dynamics.","authors":"Abby Trouth,Giovana M B Veronezi,Srinivas Ramachandran","doi":"10.1042/bcj20240139","DOIUrl":"https://doi.org/10.1042/bcj20240139","url":null,"abstract":"Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"77 1","pages":"1519-1533"},"PeriodicalIF":4.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain. 组蛋白去乙酰化酶 7 通过一种与酶无关的机制激活 6-磷酸葡萄糖酸脱氢酶,该机制涉及 N 端蛋白-蛋白相互作用结构域。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 DOI: 10.1042/BCJ20240380
Yizhuo Wang, James E B Curson, Divya Ramnath, Kaustav Das Gupta, Robert C Reid, Denuja Karunakaran, David P Fairlie, Matthew J Sweet

Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.

组蛋白去乙酰化酶 7(HDAC7)是经典 HDAC IIa 类家族的成员,在细胞发育、分化和活化(包括巨噬细胞和其他先天性免疫细胞)中发挥着重要作用。HDAC7 和其他 IIa 类 HDAC 在细胞核中充当转录抑制因子,但在某些细胞类型中,它们也能在细胞质中改变非核蛋白和/或支架信号复合物。在巨噬细胞中,HDAC7是一种细胞质蛋白,具有促炎和抗炎两种功能,后者的活性涉及激活磷酸戊糖途径(PPP)酶6-磷酸葡萄糖酸脱氢酶(6PGD)和生成抗炎代谢产物核酮糖-5-磷酸。在这里,我们利用异位表达系统和生化方法研究了 HDAC7 促进 6PGD 酶活性的机制。我们发现,HDAC7 激活 6PGD 并不需要 HDAC7 的酶活性,HDAC7 的 N 端蛋白-蛋白相互作用结构域足以启动这一反应。从机理上讲,HDAC7 的 N 端增加了 6PGD 对 NADP+ 的亲和力,促进了较短形式 6PGD 的生成,并增强了高阶蛋白复合物的形成,这意味着它在参与 PPP 过程中的支架功能。这与 HDAC7 在巨噬细胞中的促炎功能形成鲜明对比,在巨噬细胞中,HDAC7 促进糖酵解酶丙酮酸激酶 M2 的去乙酰化,从而产生炎性细胞因子。
{"title":"Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain.","authors":"Yizhuo Wang, James E B Curson, Divya Ramnath, Kaustav Das Gupta, Robert C Reid, Denuja Karunakaran, David P Fairlie, Matthew J Sweet","doi":"10.1042/BCJ20240380","DOIUrl":"10.1042/BCJ20240380","url":null,"abstract":"<p><p>Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1569-1584"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetics and alternative splicing in cancer: old enemies, new perspectives. 癌症中的表观遗传学和替代剪接:老对手,新视角。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 DOI: 10.1042/bcj20240221
Madhura R Pandkar,Sanjeev Shukla
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
近年来,我们在概念理解和技术能力方面都取得了长足进步,从而提高了对癌症发生和发展的基本因素的认识。虽然我们对致癌的分子机制有了深入的了解,但却忽略了与遗传学协同作用的表观遗传学途径所做出的重要贡献。越来越多的证据表明,癌症是遗传学和表观遗传学之间复杂的相互作用。值得注意的是,表观遗传因子在调控替代性前核糖核酸剪接方面起着关键作用,而这种剪接是导致蛋白质多样性的主要因素。在这篇综述中,我们详细介绍了表观遗传修饰因子与替代剪接之间的双向交流,并举例说明了受影响的特定基因和同工酶。值得注意的是,本综述还简明扼要地讨论了以表观遗传调节因子为靶点以及表观遗传组编辑这一新兴领域在调节剪接模式方面的潜力。总之,这篇综述对癌症中表观遗传学和替代剪接之间错综复杂的相互作用提供了宝贵的见解,为了解和靶向这一关键过程的新方法铺平了道路。
{"title":"Epigenetics and alternative splicing in cancer: old enemies, new perspectives.","authors":"Madhura R Pandkar,Sanjeev Shukla","doi":"10.1042/bcj20240221","DOIUrl":"https://doi.org/10.1042/bcj20240221","url":null,"abstract":"In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"12 1","pages":"1497-1518"},"PeriodicalIF":4.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-competitive inhibitors of PI3K enzymes demonstrate an isoform selective dual action by controlling membrane binding. PI3K 酶的 ATP 竞争性抑制剂通过控制膜结合,显示出同工酶选择性的双重作用。
IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1042/BCJ20240479
Grace Q Gong, Glenn Robert Masson, Woo-Jeong Jeong Lee, James Mj Dickson, Jackie D Kendall, Manoj K Rathinaswamy, Christina M Buchanan, Martin Middleditch, Brady Owen, Julie A Spicer, Gordon W Rewcastle, William A Denny, John E Burke, Peter R Shepherd, Roger L Williams, Jack U Flanagan

PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and Biolayer Interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.

PI3Kα 由 PI 3-kinase 催化亚基的 p110α 异构体(由 PIK3CA 编码)和 p85α 调节亚基(由 PI3KR1 编码)组成,由生长因子受体激活。PIK3CA 常见致癌突变的发现推动了许多与 p110α 亚基中的 ATP 结合位点结合的抑制剂的开发。激活后,PI3Kα会发生构象变化,从而促进其膜相互作用和催化活性,但ATP位点定向抑制剂对PI3Kα膜相互作用的影响尚不清楚。我们利用 FRET 和生物层干涉测量法检测表明,以 GSK2126458 为代表的一类 ATP 位点定向抑制剂会阻断生长因子激活的 PI3KαWT 膜相互作用,这种活性依赖于配体形成特定的 ATP 位点相互作用。绕过正常 p85α 调节机制的热点致癌突变的膜相互作用对 GSK2126458 不敏感,而 GSK2126458 能调节这些热点区域之外的突变。我们的数据显示,GSK126458 对膜相互作用的影响需要酶从生长因子激活状态恢复到基础状态。我们发现 ATP 底物类似物能增加野生型 PI3Kα 的膜相互作用,从而揭示了一种基于底物的调控事件,不同的抑制剂化学类型可以模拟这种调控事件。我们的发现以及 PI3Kα 的小分子异构激活剂的发现说明,PI3Kα 膜相互作用可受 ATP 位点和异构位点内配体结合相关因素的调节。
{"title":"ATP-competitive inhibitors of PI3K enzymes demonstrate an isoform selective dual action by controlling membrane binding.","authors":"Grace Q Gong, Glenn Robert Masson, Woo-Jeong Jeong Lee, James Mj Dickson, Jackie D Kendall, Manoj K Rathinaswamy, Christina M Buchanan, Martin Middleditch, Brady Owen, Julie A Spicer, Gordon W Rewcastle, William A Denny, John E Burke, Peter R Shepherd, Roger L Williams, Jack U Flanagan","doi":"10.1042/BCJ20240479","DOIUrl":"https://doi.org/10.1042/BCJ20240479","url":null,"abstract":"<p><p>PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and Biolayer Interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochemical Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1