A meta-path, attention-based deep learning method to support hepatitis carcinoma predictions for improved cirrhosis patient management

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2024-04-04 DOI:10.1016/j.dss.2024.114226
Zejian (Eric) Wu , Da Xu , Paul Jen-Hwa Hu , Liang Li , Ting-Shuo Huang
{"title":"A meta-path, attention-based deep learning method to support hepatitis carcinoma predictions for improved cirrhosis patient management","authors":"Zejian (Eric) Wu ,&nbsp;Da Xu ,&nbsp;Paul Jen-Hwa Hu ,&nbsp;Liang Li ,&nbsp;Ting-Shuo Huang","doi":"10.1016/j.dss.2024.114226","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatitis carcinoma (HCC) accounts for the majority of liver cancer–related deaths globally. Cirrhosis often precedes HCC clinically in a strong, temporal relationship. Therefore, identifying cirrhosis patients at higher risk of HCC is crucial to physicians' clinical decision-making and patient management. Effective estimates of at-risk patients can facilitate timely therapeutic interventions and thereby enhance patient outcomes and well-being. We develop a novel, meta-path, attention-based deep learning method to identify at-risk cirrhosis patients. The proposed method integrates complex patient–medication interactions, essential patient–patient and medication–medication links, and the combined effects of medication and comorbidity to support downstream predictions. An empirical test of the proposed method's predictive utilities, relative to nine existing methods, uses a large sample of real-world cirrhosis patient data. The comparative results indicate that the proposed method can identify at-risk patients more effectively than all the benchmarks. The current research has important implications for clinical decision support and patient management, and it can facilitate patient self-management and treatment compliance too.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"181 ","pages":"Article 114226"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624000599","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatitis carcinoma (HCC) accounts for the majority of liver cancer–related deaths globally. Cirrhosis often precedes HCC clinically in a strong, temporal relationship. Therefore, identifying cirrhosis patients at higher risk of HCC is crucial to physicians' clinical decision-making and patient management. Effective estimates of at-risk patients can facilitate timely therapeutic interventions and thereby enhance patient outcomes and well-being. We develop a novel, meta-path, attention-based deep learning method to identify at-risk cirrhosis patients. The proposed method integrates complex patient–medication interactions, essential patient–patient and medication–medication links, and the combined effects of medication and comorbidity to support downstream predictions. An empirical test of the proposed method's predictive utilities, relative to nine existing methods, uses a large sample of real-world cirrhosis patient data. The comparative results indicate that the proposed method can identify at-risk patients more effectively than all the benchmarks. The current research has important implications for clinical decision support and patient management, and it can facilitate patient self-management and treatment compliance too.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元路径、基于注意力的深度学习方法支持肝炎癌变预测,改善肝硬化患者管理
在全球与肝癌相关的死亡病例中,肝炎癌(HCC)占大多数。在临床上,肝硬化往往先于 HCC 发生,两者之间存在密切的时间关系。因此,识别肝硬化患者罹患 HCC 的高风险对医生的临床决策和患者管理至关重要。对高危患者的有效估计有助于及时采取治疗干预措施,从而改善患者的预后和福祉。我们开发了一种新颖的、元路径的、基于注意力的深度学习方法来识别高危肝硬化患者。该方法整合了复杂的患者与药物之间的相互作用、患者与患者之间的基本联系、药物与药物之间的联系以及药物和合并症的综合影响,以支持下游预测。利用大量真实世界肝硬化患者数据样本,对拟议方法相对于九种现有方法的预测效用进行了实证测试。比较结果表明,与所有基准方法相比,所提出的方法能更有效地识别高危患者。目前的研究对临床决策支持和患者管理具有重要意义,它还能促进患者的自我管理和治疗依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
A comparative analysis of the effect of initiative risk statement versus passive risk disclosure on the financing performance of Kickstarter campaigns DeepSecure: A computational design science approach for interpretable threat hunting in cybersecurity decision making Editorial Board Effects of visual-preview and information-sidedness features on website persuasiveness The evolution of organizations and stakeholders for metaverse ecosystems: Editorial for the special issue on metaverse part 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1