Galmoss: A package for GPU-accelerated galaxy profile fitting

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-04-01 DOI:10.1016/j.ascom.2024.100825
Mi Chen , Rafael S. de Souza , Quanfeng Xu , Shiyin Shen , Ana L. Chies-Santos , Renhao Ye , Marco A. Canossa-Gosteinski , Yanping Cong
{"title":"Galmoss: A package for GPU-accelerated galaxy profile fitting","authors":"Mi Chen ,&nbsp;Rafael S. de Souza ,&nbsp;Quanfeng Xu ,&nbsp;Shiyin Shen ,&nbsp;Ana L. Chies-Santos ,&nbsp;Renhao Ye ,&nbsp;Marco A. Canossa-Gosteinski ,&nbsp;Yanping Cong","doi":"10.1016/j.ascom.2024.100825","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce <span>galmoss</span>, a <span>python</span>-based, <span>torch</span>-powered tool for two-dimensional fitting of galaxy profiles. By seamlessly enabling GPU parallelization, <span>galmoss</span> meets the high computational demands of large-scale galaxy surveys, placing galaxy profile fitting in the CSST/LSST-era. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on 8289 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, <span>galmoss</span> completed classical Sérsic profile fitting in about 10 min. Benchmark tests show that <span>galmoss</span> achieves computational speeds that are 6 <span><math><mo>×</mo></math></span> faster than those of default implementations.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100825"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133724000404/pdfft?md5=aa814e641039f49d85afa52faa3ce567&pid=1-s2.0-S2213133724000404-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000404","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce galmoss, a python-based, torch-powered tool for two-dimensional fitting of galaxy profiles. By seamlessly enabling GPU parallelization, galmoss meets the high computational demands of large-scale galaxy surveys, placing galaxy profile fitting in the CSST/LSST-era. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on 8289 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, galmoss completed classical Sérsic profile fitting in about 10 min. Benchmark tests show that galmoss achieves computational speeds that are 6 × faster than those of default implementations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Galmoss:用于 GPU 加速星系剖面拟合的软件包
我们介绍了galmoss,一个基于python、由火炬驱动的二维星系剖面拟合工具。通过无缝启用 GPU 并行化,galmoss 可以满足大规模星系调查的高计算要求,将星系剖面拟合置于 CSST/LSST 时代。它整合了广泛使用的剖面图,如塞西克剖面图、指数盘剖面图、费雷尔剖面图、金剖面图、高斯剖面图和莫法特剖面图,并允许轻松整合更复杂的模型。通过对斯隆数字巡天(SDSS)g波段的8289个星系进行测试,使用单个NVIDIA A100 GPU,galmoss在大约10分钟内就完成了经典的Sérsic剖面拟合。基准测试表明,galmoss的计算速度比默认实现快6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
AstroMLab 1: Who wins astronomy jeopardy!? Extended black hole solutions in Rastall theory of gravity Classification of galaxies from image features using best parameter selection by horse herd optimization algorithm (HOA) Accelerating radio astronomy imaging with RICK A numerical solution of Schrödinger equation for the dynamics of early universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1