首页 > 最新文献

Astronomy and Computing最新文献

英文 中文
Effects of magnetic fields on the formation of Interstellar Filaments through shock-cloud interaction 磁场通过冲击云相互作用对星际纤丝形成的影响
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100887
D. Gogoi, S.M. Borah, E. Saikia
Interstellar Filaments are ubiquitous in molecular clouds which are hotbeds for star birth. What leads to their formation has been a subject of study in recent years. In the present numerical experiment, we have looked into the role of magnetic field in formation of such structures in the context of multiple molecular cloud complexes after they were subjected to a passing shock. We found that in the absence of this field, post-shock region is turbulent, leading to higher material mixing, 17.5% in the case of the highest porous model considered which also had 42% higher area filling factor compared to models with magnetic field imposed. On the other hand in the presence of a magnetic field, processes such as ‘mass-loading’, slowing down of shock, and inhibition of instabilities are observed which we have found to facilitate the formation of less porous and hence more clumpy structures in post-shock regions. It is found that in the absence of a field, such structures are diffused and spread over a larger area. Such structures are later elongated by hydrodynamical ablation leading to filament-like structures. Morphological output images having filamentary structures are further studied using tools from Nonlinear Dynamics such as Percolation and Fractal Analysis. We find that the filaments formed without a field have higher fractal dimensions, are longer, more complex, and highly branched. Magnetic field influences the properties of the filaments, making them smaller, more confined, and less complex. Further, it is observed that the influence of B is diminished with the presence of radiative cooling, still having a subtle affect on the system’s evolution though.
星际细丝在分子云中无处不在,而分子云是恒星诞生的温床。它们的形成原因一直是近年来的研究课题。在目前的数值实验中,我们研究了磁场在多个分子云复合体受到冲击后形成此类结构的过程中的作用。我们发现,在没有磁场的情况下,冲击后区域是湍流的,导致更高的物质混合,在最高多孔模型的情况下为 17.5%,与施加磁场的模型相比,其面积填充因子也高出 42%。另一方面,在存在磁场的情况下,我们观察到了 "质量加载"、减慢冲击速度和抑制不稳定性等过程,我们发现这些过程有利于在冲击后区域形成较少的多孔结构,从而形成更多的团块结构。我们发现,在没有磁场的情况下,这种结构会扩散到更大的区域。这些结构随后会被流体动力烧蚀拉长,形成丝状结构。我们使用非线性动力学工具(如渗透和分形分析)对具有丝状结构的形态输出图像进行了进一步研究。我们发现,在没有磁场的情况下形成的丝状结构具有更高的分形维度、更长、更复杂和高度分枝。磁场会影响丝状体的特性,使其变得更小、更封闭、更复杂。此外,我们还观察到,B 的影响会随着辐射冷却的存在而减弱,但仍会对系统的演化产生微妙的影响。
{"title":"Effects of magnetic fields on the formation of Interstellar Filaments through shock-cloud interaction","authors":"D. Gogoi,&nbsp;S.M. Borah,&nbsp;E. Saikia","doi":"10.1016/j.ascom.2024.100887","DOIUrl":"10.1016/j.ascom.2024.100887","url":null,"abstract":"<div><div>Interstellar Filaments are ubiquitous in molecular clouds which are hotbeds for star birth. What leads to their formation has been a subject of study in recent years. In the present numerical experiment, we have looked into the role of magnetic field in formation of such structures in the context of multiple molecular cloud complexes after they were subjected to a passing shock. We found that in the absence of this field, post-shock region is turbulent, leading to higher material mixing, 17.5% in the case of the highest porous model considered which also had 42% higher area filling factor compared to models with magnetic field imposed. On the other hand in the presence of a magnetic field, processes such as ‘mass-loading’, slowing down of shock, and inhibition of instabilities are observed which we have found to facilitate the formation of less porous and hence more clumpy structures in post-shock regions. It is found that in the absence of a field, such structures are diffused and spread over a larger area. Such structures are later elongated by hydrodynamical ablation leading to filament-like structures. Morphological output images having filamentary structures are further studied using tools from Nonlinear Dynamics such as Percolation and Fractal Analysis. We find that the filaments formed without a field have higher fractal dimensions, are longer, more complex, and highly branched. Magnetic field influences the properties of the filaments, making them smaller, more confined, and less complex. Further, it is observed that the influence of <strong>B</strong> is diminished with the presence of radiative cooling, still having a subtle affect on the system’s evolution though.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100887"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radio frequency interference identification using dual cross-attention and multi-scale feature fusing 利用双交叉注意和多尺度特征融合进行射频干扰识别
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100881
Y. Dao , B. Liang , L. Hao , S. Feng , S. Wei , W. Dai , F. Gu
Radio astronomy plays a very important role in promoting scientific progress and unraveling the mysteries of the universe. However, radio telescopes are inevitably affected by radio frequency interference (RFI) when receiving radio signals, which leads to a reduction in data quality and has a serious impact on the formation of correct scientific conclusions. Therefore, it is essential to identify the RFI present in the observational data. In order to effectively identify RFI, improve the existing RFI identification methods that suffer from missed detections, and enhance the performance of RFI identification, this paper proposes a novel method that combines a dual cross-attention mechanism with multi-scale feature fusion. Experimental studies were conducted using the observational data from the 40-meter radio telescope at the Yunnan Astronomical Observatory of the Chinese Academy of Sciences. The proposed method achieved scores of 92.49%, 83.90%, and 87.99% in terms of precision, recall, and F1score, respectively. It outperformed existing methods (U-Net, RFI-Net, R-Net6, RFI-GAN, EMSCA-UNet) in recall and F1score, effectively reducing the occurrence of missed detections and improving the overall performance of radio frequency interference identification.
射电天文学在促进科学进步和揭开宇宙奥秘方面发挥着非常重要的作用。然而,射电望远镜在接收无线电信号时不可避免地会受到射频干扰(RFI)的影响,导致数据质量下降,严重影响正确科学结论的形成。因此,识别观测数据中存在的射频干扰至关重要。为了有效识别射频干扰,改进现有存在漏检问题的射频干扰识别方法,提高射频干扰识别的性能,本文提出了一种将双交叉注意机制与多尺度特征融合相结合的新方法。利用中国科学院云南天文台 40 米射电望远镜的观测数据进行了实验研究。所提出的方法在精确度、召回率和 F1 分数方面分别达到了 92.49%、83.90% 和 87.99%。该方法在召回率和 F1 分数方面优于现有方法(U-Net、RFI-Net、R-Net6、RFI-GAN、EMSCA-UNet),有效减少了漏检的发生,提高了射频干扰识别的整体性能。
{"title":"Radio frequency interference identification using dual cross-attention and multi-scale feature fusing","authors":"Y. Dao ,&nbsp;B. Liang ,&nbsp;L. Hao ,&nbsp;S. Feng ,&nbsp;S. Wei ,&nbsp;W. Dai ,&nbsp;F. Gu","doi":"10.1016/j.ascom.2024.100881","DOIUrl":"10.1016/j.ascom.2024.100881","url":null,"abstract":"<div><div>Radio astronomy plays a very important role in promoting scientific progress and unraveling the mysteries of the universe. However, radio telescopes are inevitably affected by radio frequency interference (RFI) when receiving radio signals, which leads to a reduction in data quality and has a serious impact on the formation of correct scientific conclusions. Therefore, it is essential to identify the RFI present in the observational data. In order to effectively identify RFI, improve the existing RFI identification methods that suffer from missed detections, and enhance the performance of RFI identification, this paper proposes a novel method that combines a dual cross-attention mechanism with multi-scale feature fusion. Experimental studies were conducted using the observational data from the 40-meter radio telescope at the Yunnan Astronomical Observatory of the Chinese Academy of Sciences. The proposed method achieved scores of 92.49%, 83.90%, and 87.99% in terms of <span><math><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span>, <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span>, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, respectively. It outperformed existing methods (U-Net, RFI-Net, R-Net6, RFI-GAN, EMSCA-UNet) in <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, effectively reducing the occurrence of missed detections and improving the overall performance of radio frequency interference identification.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100881"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying the clouds of Venus using unsupervised machine learning 利用无监督机器学习对金星云层进行分类
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100884
J. Mittendorf , K. Molaverdikhani , B. Ercolano , A. Giovagnoli , T. Grassi
Because Venus is completely shrouded by clouds, they play an important role in the planet’s atmospheric dynamics. Studying the various morphological features observed on satellite imagery of the Venusian clouds is crucial to understanding not only the dynamic atmospheric processes, but also interactions between the planet’s surface structures and atmosphere. While attempts at manually categorizing and classifying these features have been made many times throughout Venus’ observational history, they have been limited in scope and prone to subjective bias. We therefore present and investigate an automated, objective, and scalable approach for their classification using unsupervised machine learning that can leverage full datasets of past, ongoing, and future missions.
To achieve this, we introduce a novel framework to generate nadir observation patches of Venus’ clouds at fixed consistent scales from satellite imagery data of the Venus Express and Akatsuki missions. Such patches are then divided into classes using an unsupervised machine learning approach that consists of encoding the patch images into feature vectors via a convolutional neural network trained on the patch datasets and subsequently clustering the obtained embeddings using hierarchical agglomerative clustering.
We find that our approach demonstrates considerable accuracy when tested against a curated benchmark dataset of Earth cloud categories, is able to identify meaningful classes for global-scale (3000 km) cloud features on Venus and can detect small-scale (25 km) wave patterns. However, at medium scales (500 km) challenges are encountered, as available resolution and distinctive features start to diminish and blended features complicate the separation of well defined clusters.
由于金星完全被云层笼罩,因此云层在金星的大气动力学中发挥着重要作用。研究金星云层卫星图像上观测到的各种形态特征不仅对了解大气动态过程至关重要,而且对了解金星表面结构与大气之间的相互作用也至关重要。虽然在金星观测史上曾多次尝试对这些特征进行人工分类和分级,但范围有限,而且容易产生主观偏见。因此,我们提出并研究了一种自动、客观和可扩展的方法,利用无监督机器学习对这些特征进行分类,这种方法可以充分利用过去、现在和未来任务的完整数据集。为了实现这一目标,我们引入了一个新颖的框架,从金星快车和 "赤月 "任务的卫星图像数据中生成固定一致尺度的金星云层天底观测斑块。我们发现,我们的方法在与地球云类别的基准数据集进行测试时表现出相当高的准确性,能够识别金星上全球尺度(3000 千米)云特征的有意义类别,并能探测到小尺度(25 千米)的波浪模式。然而,在中等尺度(∼500 千米)上却遇到了挑战,因为可用的分辨率和独特的特征开始减弱,而且混合特征使得分离定义明确的云团变得更加复杂。
{"title":"Classifying the clouds of Venus using unsupervised machine learning","authors":"J. Mittendorf ,&nbsp;K. Molaverdikhani ,&nbsp;B. Ercolano ,&nbsp;A. Giovagnoli ,&nbsp;T. Grassi","doi":"10.1016/j.ascom.2024.100884","DOIUrl":"10.1016/j.ascom.2024.100884","url":null,"abstract":"<div><div>Because Venus is completely shrouded by clouds, they play an important role in the planet’s atmospheric dynamics. Studying the various morphological features observed on satellite imagery of the Venusian clouds is crucial to understanding not only the dynamic atmospheric processes, but also interactions between the planet’s surface structures and atmosphere. While attempts at manually categorizing and classifying these features have been made many times throughout Venus’ observational history, they have been limited in scope and prone to subjective bias. We therefore present and investigate an automated, objective, and scalable approach for their classification using unsupervised machine learning that can leverage full datasets of past, ongoing, and future missions.</div><div>To achieve this, we introduce a novel framework to generate nadir observation patches of Venus’ clouds at fixed consistent scales from satellite imagery data of the <em>Venus Express</em> and <em>Akatsuki</em> missions. Such patches are then divided into classes using an unsupervised machine learning approach that consists of encoding the patch images into feature vectors via a convolutional neural network trained on the patch datasets and subsequently clustering the obtained embeddings using hierarchical agglomerative clustering.</div><div>We find that our approach demonstrates considerable accuracy when tested against a curated benchmark dataset of Earth cloud categories, is able to identify meaningful classes for global-scale (3000<!--> <!-->km) cloud features on Venus and can detect small-scale (25<!--> <!-->km) wave patterns. However, at medium scales (<span><math><mo>∼</mo></math></span>500<!--> <!-->km) challenges are encountered, as available resolution and distinctive features start to diminish and blended features complicate the separation of well defined clusters.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100884"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal variation of atmospheric electric field in comparison with solar terrestrial activities during the 24th solar cycle 第 24 个太阳周期期间大气电场的时间变化与太阳地面活动的比较
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100882
S. Faiz Gurmani , N. Ahmad , R. Kalsoom , S. Shahzada , M. Awais , M. Ali Shah
Solar activities play an important role in the variation of the Atmospheric Electric Field (AEF), and affect the Global Electric Circuit (GEC). The relationship between the variation of the AEF and solar activities is focused in the present study. It includes the variation in the AEF with respect to sunspot numbers, direct and indirect radiations, and solar flares during the decline phase of solar cycle 24 from 2015–2019 for Islamabad (ISL) observatory in detail, and partially for Muzaffarabad (MZF) observatory. A few of them had good relationship with the atmospheric electric field. The solar eclipse effect on the atmospheric electric field for the Muzaffarabad station is also presented in this work. A significant increase was observed during the eclipse period which led to decrease in electrical conductivity of atmospheric electric field as compared to alternate days for the same period.
太阳活动对大气电场(AEF)的变化起着重要作用,并影响着全球电路(GEC)。本研究的重点是大气电场变化与太阳活动之间的关系。它包括伊斯兰堡(ISL)观测站在 2015-2019 年太阳周期 24 的下降阶段大气电场与太阳黑子数、直接和间接辐射以及太阳耀斑之间的详细变化,以及穆扎法拉巴德(MZF)观测站的部分变化。其中一些日食与大气电场关系密切。本研究还介绍了日食对穆扎法拉巴德观测站大气电场的影响。在日食期间,观测到大气电场的电导率明显增加,这导致大气电场的电导率与同期隔日相比有所下降。
{"title":"Temporal variation of atmospheric electric field in comparison with solar terrestrial activities during the 24th solar cycle","authors":"S. Faiz Gurmani ,&nbsp;N. Ahmad ,&nbsp;R. Kalsoom ,&nbsp;S. Shahzada ,&nbsp;M. Awais ,&nbsp;M. Ali Shah","doi":"10.1016/j.ascom.2024.100882","DOIUrl":"10.1016/j.ascom.2024.100882","url":null,"abstract":"<div><div>Solar activities play an important role in the variation of the Atmospheric Electric Field (AEF), and affect the Global Electric Circuit (GEC). The relationship between the variation of the AEF and solar activities is focused in the present study. It includes the variation in the AEF with respect to sunspot numbers, direct and indirect radiations, and solar flares during the decline phase of solar cycle 24 from 2015–2019 for Islamabad (ISL) observatory in detail, and partially for Muzaffarabad (MZF) observatory. A few of them had good relationship with the atmospheric electric field. The solar eclipse effect on the atmospheric electric field for the Muzaffarabad station is also presented in this work. A significant increase was observed during the eclipse period which led to decrease in electrical conductivity of atmospheric electric field as compared to alternate days for the same period.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100882"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method 用深度学习和 MCMC 方法全面分析 f(Q) 引力下的观测宇宙学
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100892
L.K. Sharma , S. Parekh , A.K. Yadav , N. Goyal
Our goal in this study is to build FRW cosmological models inside the f(Q) theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the f(Q) gravity model using a novel, straightforward parameterization of the Hubble parameter in the form H=H0(1+z)1+q0q1exp(q1z). The corresponding free parameters in H(z) are limited between 1σ and 2σ confidence bounds using the χ2-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter q(z) represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.
本研究的目标是利用贝叶斯统计和深度学习方法,在 f(Q) 引力理论框架内建立 FRW 宇宙学模型。我们使用一种新颖、直接的哈勃参数参数化形式 H=H0(1+z)1+q0-q1exp(q1z) 来研究特定版本的 f(Q) 引力模型的宇宙加速行为。利用 χ2 最小化程序将 H(z) 中相应的自由参数限制在 1σ 和 2σ 置信度之间。结果表明,我们得到的所有数字都与宇宙学观测所预测的相差无几。在我们的模型中,我们利用能量密度、压力和状态方程等特征研究了宇宙的物理行为。我们分析了模型中的哈勃参数、加速度参数和宇宙年龄等运动学因素。在我们的概念中,减速参数 q(z) 代表宇宙从减速到加速的过渡。我们利用混合神经网络(MNN)进行参数估计,这是一种结合了人工神经网络(ANN)和混合密度网络(MDN)的新方法。这种新方法充分利用了人工神经网络、MDN 和 MNN 的优势,提高了参数估计的准确性。
{"title":"A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method","authors":"L.K. Sharma ,&nbsp;S. Parekh ,&nbsp;A.K. Yadav ,&nbsp;N. Goyal","doi":"10.1016/j.ascom.2024.100892","DOIUrl":"10.1016/j.ascom.2024.100892","url":null,"abstract":"<div><div>Our goal in this study is to build FRW cosmological models inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity model using a novel, straightforward parameterization of the Hubble parameter in the form <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. The corresponding free parameters in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are limited between 1<span><math><mi>σ</mi></math></span> and 2<span><math><mi>σ</mi></math></span> confidence bounds using the <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100892"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On detection of BaO molecular lines in sunspot spectrum 关于探测太阳黑子光谱中的氧化钡分子线
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100891
P. Sriramachandran , S.H. Nivash
<div><h3>Context</h3><div>Spectral lines of diatomic molecules are perfect tools for studying the structure of sunspots and their temperature layers and magnetic sensitive absorption features, which are typically higher than in atomic lines. The integrated intensities of a few bands in the rotational structure of the astrophysically significant <span><math><mrow><msup><mi>A</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup></mrow></math></span>and <span><math><mrow><mi>A</mi><msup><mrow></mrow><mrow><mo>′</mo><mn>1</mn></mrow></msup><mstyle><mi>Π</mi></mstyle><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup></mrow></math></span> systems of barium monoxide (BaO) have been measured experimentally using band spectra. An analysis of the prominent lines of (0, 0; 1, 1; 2, 2) bands of <span><math><mrow><msup><mi>A</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup></mrow></math></span>transition and (0, 0; 1, 1; 2, 2) bands of <span><math><mrow><mi>A</mi><msup><mrow></mrow><mrow><mo>′</mo><mn>1</mn></mrow></msup><mstyle><mi>Π</mi></mstyle><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mspace></mspace></mrow></math></span>transition with those of sunspot umbral spectrum. The effective rotational temperatures of the <span><math><mrow><mi>A</mi><msup><mrow></mrow><mrow><mo>′</mo><mn>1</mn></mrow></msup><mstyle><mi>Π</mi></mstyle><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mspace></mspace></mrow></math></span>transition of BaO in the sunspot umbral spectrum are found to be in the range of 1600 K to 3200 K.</div></div><div><h3>Aims</h3><div>An analysis of BaO prominent rotational molecular lines of <span><math><mrow><msup><mi>A</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup></mrow></math></span>and <span><math><mrow><mi>A</mi><msup><mrow></mrow><mrow><mo>′</mo><mn>1</mn></mrow></msup><mstyle><mi>Π</mi></mstyle><mo>−</mo><msup><mi>X</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mspace></mspace></mrow></math></span>transition with those of sunspot umbral spectral lines. To find the significant values of radiative transition parameters, vibrational temperature and the effective rotational temperature of the molecule in celestial objects.</div></div><div><h3>Methods</h3><div>Calibrated the rotational structure of molecular band heads and lines for and <span><math><mrow><msup><mi>A</mi><mn>1</mn></msup><msup><mrow><mstyle><mi>Σ</mi><
背景二原子分子的谱线是研究太阳黑子结构及其温度层和磁敏感吸收特征的完美工具,其吸收率通常高于原子谱线。我们利用波段光谱对一氧化钡(BaO)具有天体物理学意义的 A1Σ+-X1Σ+ 和 A′1Π-X1Σ+ 系统旋转结构中几个波段的综合强度进行了实验测量。分析了 A1Σ+-X1Σ+ 转变的 (0, 0; 1, 1; 2, 2) 波段和 A′1Π-X1Σ+ 转变的 (0, 0; 1, 1; 2, 2) 波段的突出线与太阳黑子本征光谱的突出线。分析了太阳黑子本征光谱中 BaO 的 A′1Π-X1Σ+过渡的 A′1Π-X1Σ+有效旋转温度与太阳黑子本征光谱线的有效旋转温度。方法用最精确的哈特曼技术校准实验室光谱中 A1Σ+-X1Σ+ 和 A′1Π-X1Σ+ 转变的分子带头和线的旋转结构。利用来自 NSO/Kitt Peak 的高分辨率 FTS 太阳黑子本体光谱,采用线重合的方法探测了由于 BaO 分子的 A′1Π-X1Σ+ 转变而产生的旋转分子线。有效旋转温度是根据本征光谱中某一波段的光谱解析旋转线的等效宽度(W)随旋转量子数(J)的变化而得出的。结果发现太阳黑子本影光谱中 BaO 的 A′1Π-X1Σ+ 转变的有效旋转温度在 1600 K 到 3200 K 之间。结论BaO带引起的不混合旋转线为研究本影光谱中的吸收层提供了良好的温度范围。研究发现,BaO 分子线的 A′1Π-X1Σ+ 转变对有效温度非常敏感。与强度测量相比,这些线的辐射转变参数数据为我们研究太阳黑子本影最冷部分提供了更直接、更详细的信息。
{"title":"On detection of BaO molecular lines in sunspot spectrum","authors":"P. Sriramachandran ,&nbsp;S.H. Nivash","doi":"10.1016/j.ascom.2024.100891","DOIUrl":"10.1016/j.ascom.2024.100891","url":null,"abstract":"&lt;div&gt;&lt;h3&gt;Context&lt;/h3&gt;&lt;div&gt;Spectral lines of diatomic molecules are perfect tools for studying the structure of sunspots and their temperature layers and magnetic sensitive absorption features, which are typically higher than in atomic lines. The integrated intensities of a few bands in the rotational structure of the astrophysically significant &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; systems of barium monoxide (BaO) have been measured experimentally using band spectra. An analysis of the prominent lines of (0, 0; 1, 1; 2, 2) bands of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;transition and (0, 0; 1, 1; 2, 2) bands of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;transition with those of sunspot umbral spectrum. The effective rotational temperatures of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;transition of BaO in the sunspot umbral spectrum are found to be in the range of 1600 K to 3200 K.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Aims&lt;/h3&gt;&lt;div&gt;An analysis of BaO prominent rotational molecular lines of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;transition with those of sunspot umbral spectral lines. To find the significant values of radiative transition parameters, vibrational temperature and the effective rotational temperature of the molecule in celestial objects.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Methods&lt;/h3&gt;&lt;div&gt;Calibrated the rotational structure of molecular band heads and lines for and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100891"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of bulk viscous pressure with observational constraints via scalar field in the General relativity and f(Q) gravity 通过广义相对论和 f(Q) 引力中的标量场计算具有观测约束条件的体粘性压力
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100885
A. Dixit , S. Gupta , A. Pradhan , S. Krishnannair
The present article deals with the isotropic cosmological model of f(Q) gravity filled with bulk viscous fluid, where Q is the non-metricity term and it is responsible for the gravitational interaction. Aside from the tachyon and quintessence scalar fields, the modified Einstein’s field equations have been resolved through the application of the power law form of the expansion. In this model, the Markov chain Monte Carlo (MCMC) analysis method has been utilized to obtained the best-fit value of the model parameter and it confirms that the model satisfies the recent observational data. We have also examined the EoS parameter for bulk viscosity in these cosmological contexts and it has been determined that ωeff will be located in the phantom region. The correspondence between bulk pressure and the reconstructed ωrec,Q in f(Q) gravity has also been addressed. In the presence of holographic Ricci dark energy, the reconstructed f(Q) gravity yields a transition from the quintessence era into phantom era.
本文讨论的是充满粘性流体的 f(Q) 重力各向同性宇宙学模型,其中 Q 是非度量项,它负责引力相互作用。除速子和五子标量场外,修正的爱因斯坦场方程通过应用幂律形式的展开得到了解决。在该模型中,我们利用马尔科夫链蒙特卡罗(MCMC)分析方法获得了模型参数的最佳拟合值,并证实该模型满足最近的观测数据。我们还研究了这些宇宙学背景下的体积粘度 EoS 参数,确定 ωeff 将位于幻影区域。我们还研究了在 f(Q)引力下体积压力与重建的 ωrec,Q 之间的对应关系。在存在全息里奇暗能量的情况下,重构的f(Q)引力产生了从五元时代到幻影时代的过渡。
{"title":"Computation of bulk viscous pressure with observational constraints via scalar field in the General relativity and f(Q) gravity","authors":"A. Dixit ,&nbsp;S. Gupta ,&nbsp;A. Pradhan ,&nbsp;S. Krishnannair","doi":"10.1016/j.ascom.2024.100885","DOIUrl":"10.1016/j.ascom.2024.100885","url":null,"abstract":"<div><div>The present article deals with the isotropic cosmological model of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity filled with bulk viscous fluid, where <span><math><mi>Q</mi></math></span> is the non-metricity term and it is responsible for the gravitational interaction. Aside from the tachyon and quintessence scalar fields, the modified Einstein’s field equations have been resolved through the application of the power law form of the expansion. In this model, the Markov chain Monte Carlo (MCMC) analysis method has been utilized to obtained the best-fit value of the model parameter and it confirms that the model satisfies the recent observational data. We have also examined the EoS parameter for bulk viscosity in these cosmological contexts and it has been determined that <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></math></span> will be located in the phantom region. The correspondence between bulk pressure and the reconstructed <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mo>,</mo><mi>Q</mi></mrow></msub></math></span> in f(Q) gravity has also been addressed. In the presence of holographic Ricci dark energy, the reconstructed <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity yields a transition from the quintessence era into phantom era.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100885"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magritte, a modern software library for spectral line radiative transfer 马格里特,光谱线辐射传递现代软件库
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100889
T. Ceulemans , F. De Ceuster , L. Decin , J. Yates
Spectral line observations are an indispensable tool to remotely probe the physical and chemical conditions throughout the universe. Modelling their behaviour is a computational challenge that requires dedicated software. In this paper, we present the first long-term stable release of Magritte, an open-source software library for line radiative transfer. First, we establish its necessity with two applications. Then, we introduce the overall design strategy and the application/programmer interface (API). Finally, we present three key improvements over previous versions: (1) an improved re-meshing algorithm to efficiently coarsen the spatial discretisation of a model; (2) a variation on Ng-acceleration, a popular acceleration-of-convergence method for non-LTE line transfer; and, (3) a semi-analytic approximation for line optical depths in the presence of large velocity gradients.
光谱线观测是远程探测整个宇宙的物理和化学条件不可或缺的工具。对其行为建模是一项计算挑战,需要专用软件。在本文中,我们介绍了 Magritte 的第一个长期稳定版本,这是一个用于谱线辐射传递的开源软件库。首先,我们通过两个应用来确定其必要性。然后,我们介绍了总体设计策略和应用程序/程序员接口(API)。最后,我们介绍了与之前版本相比的三项主要改进:(1)改进的重新网格划分算法,可有效粗化模型的空间离散度;(2)Ng-acceleration 的变体,这是一种用于非 LTE 线传输的流行收敛加速方法;以及(3)在存在较大速度梯度的情况下,线光学深度的半解析近似值。
{"title":"Magritte, a modern software library for spectral line radiative transfer","authors":"T. Ceulemans ,&nbsp;F. De Ceuster ,&nbsp;L. Decin ,&nbsp;J. Yates","doi":"10.1016/j.ascom.2024.100889","DOIUrl":"10.1016/j.ascom.2024.100889","url":null,"abstract":"<div><div>Spectral line observations are an indispensable tool to remotely probe the physical and chemical conditions throughout the universe. Modelling their behaviour is a computational challenge that requires dedicated software. In this paper, we present the first long-term stable release of <span>Magritte</span>, an open-source software library for line radiative transfer. First, we establish its necessity with two applications. Then, we introduce the overall design strategy and the application/programmer interface (API). Finally, we present three key improvements over previous versions: (1) an improved re-meshing algorithm to efficiently coarsen the spatial discretisation of a model; (2) a variation on Ng-acceleration, a popular acceleration-of-convergence method for non-LTE line transfer; and, (3) a semi-analytic approximation for line optical depths in the presence of large velocity gradients.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100889"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2 DECam 局部体积探测测量数据第 2 版中的递归神经网络光度红移概率密度估计
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100886
G. Teixeira , C.R. Bom , L. Santana-Silva , B.M.O. Fraga , P. Darc , R. Teixeira , J.F. Wu , P.S. Ferguson , C.E. Martínez-Vázquez , A.H. Riley , A. Drlica-Wagner , Y. Choi , B. Mutlu-Pakdil , A.B. Pace , J.D. Sakowska , G.S. Stringfellow
Photometric wide-field surveys are imaging the sky in unprecedented detail. These surveys face a significant challenge in efficiently estimating galactic photometric redshifts while accurately quantifying associated uncertainties. In this work, we address this challenge by exploring the estimation of Probability Density Functions (PDFs) for the photometric redshifts of galaxies across a vast area of 17,000 square degrees, encompassing objects with a median 5σ point-source depth of g = 24.3, r=23.9, i = 23.5, and z = 22.8 mag. Our approach uses deep learning, specifically integrating a Recurrent Neural Network architecture with a Mixture Density Network, to leverage magnitudes and colors as input features for constructing photometric redshift PDFs across the whole DECam Local Volume Exploration (DELVE) survey sky footprint. Subsequently, we rigorously evaluate the reliability and robustness of our estimation methodology, gauging its performance against other well-established machine learning methods to ensure the quality of our redshift estimations. Our best results constrain photometric redshifts with the bias of 0.0013, a scatter of 0.0293, and an outlier fraction of 5.1%. These point estimates are accompanied by well-calibrated PDFs evaluated using diagnostic tools such as Probability Integral Transform and Odds distribution. We also address the problem of the accessibility of PDFs in terms of disk space storage and the time demand required to generate their corresponding parameters.We present a novel Autoencoder model that reduces the size of PDF parameter arrays to one-sixth of their original length, significantly decreasing the time required for PDF generation to one-eighth of the time needed when generating PDFs directly from the magnitudes.
测光宽视场巡天正在以前所未有的细节对天空进行成像。这些巡天在高效估算星系光度红移的同时准确量化相关的不确定性方面面临着巨大的挑战。在这项工作中,我们通过探索在 17,000 平方度的广阔区域内估算星系光度红移的概率密度函数(PDF)来应对这一挑战,该区域涵盖了中位 5σ 点源深度为 g = 24.3、r=23.9、i = 23.5 和 z = 22.8 等的天体。我们的方法使用了深度学习,特别是将循环神经网络架构与混合密度网络相整合,利用星等和颜色作为输入特征,在整个DECam局部体积探测(DELVE)巡天足迹中构建光度红移PDF。随后,我们对估算方法的可靠性和稳健性进行了严格评估,将其性能与其他成熟的机器学习方法进行对比,以确保红移估算的质量。我们的最佳结果约束了测光红移,偏差为-0.0013,散度为0.0293,离群分数为5.1%。这些点估计值都附有校准良好的 PDF,并使用概率积分变换和 Odds 分布等诊断工具进行了评估。我们还解决了 PDF 在磁盘空间存储方面的可访问性问题,以及生成其相应参数所需的时间要求。我们提出了一种新颖的自动编码器模型,可将 PDF 参数数组的大小减少到原来的六分之一,从而将生成 PDF 所需的时间大幅减少到直接从幅值生成 PDF 所需的八分之一。
{"title":"Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2","authors":"G. Teixeira ,&nbsp;C.R. Bom ,&nbsp;L. Santana-Silva ,&nbsp;B.M.O. Fraga ,&nbsp;P. Darc ,&nbsp;R. Teixeira ,&nbsp;J.F. Wu ,&nbsp;P.S. Ferguson ,&nbsp;C.E. Martínez-Vázquez ,&nbsp;A.H. Riley ,&nbsp;A. Drlica-Wagner ,&nbsp;Y. Choi ,&nbsp;B. Mutlu-Pakdil ,&nbsp;A.B. Pace ,&nbsp;J.D. Sakowska ,&nbsp;G.S. Stringfellow","doi":"10.1016/j.ascom.2024.100886","DOIUrl":"10.1016/j.ascom.2024.100886","url":null,"abstract":"<div><div>Photometric wide-field surveys are imaging the sky in unprecedented detail. These surveys face a significant challenge in efficiently estimating galactic photometric redshifts while accurately quantifying associated uncertainties. In this work, we address this challenge by exploring the estimation of Probability Density Functions (PDFs) for the photometric redshifts of galaxies across a vast area of 17,000 square degrees, encompassing objects with a median 5<span><math><mi>σ</mi></math></span> point-source depth of <span><math><mi>g</mi></math></span> <span><math><mo>=</mo></math></span> 24.3, <span><math><mrow><mi>r</mi><mo>=</mo><mn>23</mn><mo>.</mo><mn>9</mn></mrow></math></span>, <span><math><mi>i</mi></math></span> <span><math><mo>=</mo></math></span> 23.5, and <span><math><mi>z</mi></math></span> <span><math><mo>=</mo></math></span> 22.8 mag. Our approach uses deep learning, specifically integrating a Recurrent Neural Network architecture with a Mixture Density Network, to leverage magnitudes and colors as input features for constructing photometric redshift PDFs across the whole DECam Local Volume Exploration (DELVE) survey sky footprint. Subsequently, we rigorously evaluate the reliability and robustness of our estimation methodology, gauging its performance against other well-established machine learning methods to ensure the quality of our redshift estimations. Our best results constrain photometric redshifts with the bias of <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0013</mn></mrow></math></span>, a scatter of 0.0293, and an outlier fraction of 5.1%. These point estimates are accompanied by well-calibrated PDFs evaluated using diagnostic tools such as Probability Integral Transform and Odds distribution. We also address the problem of the accessibility of PDFs in terms of disk space storage and the time demand required to generate their corresponding parameters.We present a novel Autoencoder model that reduces the size of PDF parameter arrays to one-sixth of their original length, significantly decreasing the time required for PDF generation to one-eighth of the time needed when generating PDFs directly from the magnitudes.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100886"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating universe in f(R,Lm) gravity f(R,Lm) 引力下的加速宇宙
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-10-01 DOI: 10.1016/j.ascom.2024.100888
A. Beesham , R.K. Tiwari , B.K. Shukla , D. Sofuoğlu , A. Tiwari
This paper investigates the dynamics of cosmic expansion within the framework of f(R,Lm) gravity, focusing on the late-time behavior of the universe modeled as a flat Friedmann–Lemaître–Robertson–Walker spacetime. We derive an analytical solution for the field equations and employ advanced statistical techniques, including the Markov Chain Monte Carlo (MCMC) method, to determine best-fit values for the key cosmological parameters, such as the Hubble parameter and the deceleration parameter. Our findings reveal a transition from a decelerating to an accelerating phase of cosmic expansion, aligning closely with observational data as in the ΛCDM model. The analysis of energy conditions indicates that the strong energy condition is violated, in keeping with the current accelerated expansion of the universe and the nature of dark energy. By elucidating the quintessence behavior of our model through statefinder and Om diagnostics, this study contributes to a deeper understanding of cosmic evolution and the fundamental forces at play. The insights gained pave the way for future research into alternative cosmological models, inviting further exploration of the mysteries surrounding dark energy and the ultimate fate of the universe.
本文在 f(R,Lm) 引力框架内研究了宇宙膨胀的动力学,重点是以平坦的弗里德曼-勒梅特尔-罗伯逊-沃克时空为模型的宇宙晚期行为。我们推导出了场方程的解析解,并采用了先进的统计技术,包括马尔可夫链蒙特卡洛(MCMC)方法,以确定哈勃参数和减速参数等关键宇宙学参数的最佳拟合值。我们的发现揭示了宇宙膨胀从减速阶段向加速阶段的过渡,与 ΛCDM 模型中的观测数据非常吻合。对能量条件的分析表明,强能量条件被违反了,这与当前宇宙的加速膨胀和暗能量的性质是一致的。这项研究通过状态探测器和 Om 诊断阐明了我们模型的本质行为,有助于加深对宇宙演化和基本作用力的理解。所获得的洞察力为未来研究其他宇宙学模型铺平了道路,并将进一步探索围绕暗能量和宇宙最终命运的奥秘。
{"title":"Accelerating universe in f(R,Lm) gravity","authors":"A. Beesham ,&nbsp;R.K. Tiwari ,&nbsp;B.K. Shukla ,&nbsp;D. Sofuoğlu ,&nbsp;A. Tiwari","doi":"10.1016/j.ascom.2024.100888","DOIUrl":"10.1016/j.ascom.2024.100888","url":null,"abstract":"<div><div>This paper investigates the dynamics of cosmic expansion within the framework of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity, focusing on the late-time behavior of the universe modeled as a flat Friedmann–Lemaître–Robertson–Walker spacetime. We derive an analytical solution for the field equations and employ advanced statistical techniques, including the Markov Chain Monte Carlo (MCMC) method, to determine best-fit values for the key cosmological parameters, such as the Hubble parameter and the deceleration parameter. Our findings reveal a transition from a decelerating to an accelerating phase of cosmic expansion, aligning closely with observational data as in the <span><math><mi>Λ</mi></math></span>CDM model. The analysis of energy conditions indicates that the strong energy condition is violated, in keeping with the current accelerated expansion of the universe and the nature of dark energy. By elucidating the quintessence behavior of our model through statefinder and Om diagnostics, this study contributes to a deeper understanding of cosmic evolution and the fundamental forces at play. The insights gained pave the way for future research into alternative cosmological models, inviting further exploration of the mysteries surrounding dark energy and the ultimate fate of the universe.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100888"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Astronomy and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1