Fecal Bacteria Contamination of Floodwaters and a Coastal Waterway From Tidally-Driven Stormwater Network Inundation

IF 4.3 2区 医学 Q2 ENVIRONMENTAL SCIENCES Geohealth Pub Date : 2024-04-23 DOI:10.1029/2024GH001020
M. M. Carr, A. C. Gold, A. Harris, K. Anarde, M. Hino, N. Sauers, G. Da Silva, C. Gamewell, N. G. Nelson
{"title":"Fecal Bacteria Contamination of Floodwaters and a Coastal Waterway From Tidally-Driven Stormwater Network Inundation","authors":"M. M. Carr,&nbsp;A. C. Gold,&nbsp;A. Harris,&nbsp;K. Anarde,&nbsp;M. Hino,&nbsp;N. Sauers,&nbsp;G. Da Silva,&nbsp;C. Gamewell,&nbsp;N. G. Nelson","doi":"10.1029/2024GH001020","DOIUrl":null,"url":null,"abstract":"<p>Inundation of coastal stormwater networks by tides is widespread due to sea-level rise (SLR). The water quality risks posed by tidal water rising up through stormwater infrastructure (pipes and catch basins), out onto roadways, and back out to receiving water bodies is poorly understood but may be substantial given that stormwater networks are a known source of fecal contamination. In this study, we (a) documented temporal variation in concentrations of <i>Enterococcus</i> spp. (ENT), the fecal indicator bacteria standard for marine waters, in a coastal waterway over a 2-month period and more intensively during two perigean spring tide periods, (b) measured ENT concentrations in roadway floodwaters during tidal floods, and (c) explained variation in ENT concentrations as a function of tidal inundation, antecedent rainfall, and stormwater infrastructure using a pipe network inundation model and robust linear mixed effect models. We find that ENT concentrations in the receiving waterway vary as a function of tidal stage and antecedent rainfall, but also site-specific characteristics of the stormwater network that drains to the waterway. Tidal variables significantly explain measured ENT variance in the waterway, however, runoff drove higher ENT concentrations in the receiving waterway. Samples of floodwaters on roadways during both perigean spring tide events were limited, but all samples exceeded the threshold for safe public use of recreational waters. These results indicate that inundation of stormwater networks by tides could pose public health hazards in receiving water bodies and on roadways, which will likely be exacerbated in the future due to continued SLR.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GH001020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inundation of coastal stormwater networks by tides is widespread due to sea-level rise (SLR). The water quality risks posed by tidal water rising up through stormwater infrastructure (pipes and catch basins), out onto roadways, and back out to receiving water bodies is poorly understood but may be substantial given that stormwater networks are a known source of fecal contamination. In this study, we (a) documented temporal variation in concentrations of Enterococcus spp. (ENT), the fecal indicator bacteria standard for marine waters, in a coastal waterway over a 2-month period and more intensively during two perigean spring tide periods, (b) measured ENT concentrations in roadway floodwaters during tidal floods, and (c) explained variation in ENT concentrations as a function of tidal inundation, antecedent rainfall, and stormwater infrastructure using a pipe network inundation model and robust linear mixed effect models. We find that ENT concentrations in the receiving waterway vary as a function of tidal stage and antecedent rainfall, but also site-specific characteristics of the stormwater network that drains to the waterway. Tidal variables significantly explain measured ENT variance in the waterway, however, runoff drove higher ENT concentrations in the receiving waterway. Samples of floodwaters on roadways during both perigean spring tide events were limited, but all samples exceeded the threshold for safe public use of recreational waters. These results indicate that inundation of stormwater networks by tides could pose public health hazards in receiving water bodies and on roadways, which will likely be exacerbated in the future due to continued SLR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潮汐驱动的暴雨网络淹没造成的洪水和沿海水道的粪便细菌污染
由于海平面上升(SLR),沿海雨水管网被潮水淹没的现象非常普遍。潮水通过雨水基础设施(管道和集水池)上升,流向道路,再返回到受纳水体,这对水质造成的风险尚不清楚,但鉴于雨水网络是已知的粪便污染源,其风险可能很大。在这项研究中,我们(a) 记录了沿海水道中的肠球菌属 (ENT) 浓度(海洋水域的粪便指示细菌标准)在两个月内的时间变化,并在两次近地春潮期间进行了更深入的研究;(b) 在潮汐洪水期间测量了道路洪水中的 ENT 浓度;(c) 使用管网淹没模型和稳健线性混合效应模型解释了 ENT 浓度的变化与潮汐淹没、前降雨量和雨水基础设施的函数关系。我们发现,受纳水道中的 ENT 浓度不仅与潮汐阶段和前期降雨量有关,还与排入水道的雨水管网的具体地点特征有关。潮汐变量可以很好地解释水道中测得的 ENT 差异,但径流会导致受纳水道中的 ENT 浓度更高。在两次近地春潮事件中,道路上的洪水样本有限,但所有样本都超过了公众安全使用娱乐水域的阈值。这些结果表明,潮汐对雨水网络的淹没可能会对受纳水体和道路上的公共健康造成危害,而由于持续的可持续土地上升,这种危害在未来可能会更加严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geohealth
Geohealth Environmental Science-Pollution
CiteScore
6.80
自引率
6.20%
发文量
124
审稿时长
19 weeks
期刊介绍: GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.
期刊最新文献
Planetary Health Booms: Unpacking the Surge in Research Across the Globe Through Joint-Point Analysis Satellite-Derived, Smartphone-Delivered Geospatial Cholera Risk Information for Vulnerable Populations Upstream Oil and Gas Production and Community COVID-19 Case and Mortality Rates in California, USA Association of Long-Term Exposure to PM2.5 Constituents and Green Space With Arthritis and Rheumatoid Arthritis Methods for Quantifying Source-Specific Air Pollution Exposure to Serve Epidemiology, Risk Assessment, and Environmental Justice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1