Xiaoqing Wang , Feng Sun , Xiaolong Ma , Fangtong Jiao , Benxing Liu , Pengsheng Zhao
{"title":"Short-term traffic flow prediction based on vehicle trip chain features","authors":"Xiaoqing Wang , Feng Sun , Xiaolong Ma , Fangtong Jiao , Benxing Liu , Pengsheng Zhao","doi":"10.1080/19427867.2024.2334100","DOIUrl":null,"url":null,"abstract":"<div><div>Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversaturated traffic operations cannot be accurately predicted based only on detector data from a single intersection. This study proposes a short-term traffic prediction method based on vehicle trip chain features. First, the video data is pre-processed and quality assessed. Then, vehicle trip chain features are mined to correlate upstream and downstream intersections.Convolutional neural networks and long-short-term-memory model are built next. The model is launched to train the predictor and output the traffic flow for all turns at each approach to the intersection. After cases we demonstrate that the prediction accuracy of CNNs-LSTM is usually better than other methods, especially during oversaturation. In addition, we demonstrate that vehicle trip chain features can improve prediction accuracy and shorten the time consumed by the model.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 1","pages":"Pages 157-168"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversaturated traffic operations cannot be accurately predicted based only on detector data from a single intersection. This study proposes a short-term traffic prediction method based on vehicle trip chain features. First, the video data is pre-processed and quality assessed. Then, vehicle trip chain features are mined to correlate upstream and downstream intersections.Convolutional neural networks and long-short-term-memory model are built next. The model is launched to train the predictor and output the traffic flow for all turns at each approach to the intersection. After cases we demonstrate that the prediction accuracy of CNNs-LSTM is usually better than other methods, especially during oversaturation. In addition, we demonstrate that vehicle trip chain features can improve prediction accuracy and shorten the time consumed by the model.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.