Yan Li, You Jie Huang, Xin Li Chen, Wei Sheng Wang, Xin Huang, Hui Xiao, Li Qiang Zhu
{"title":"Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities","authors":"Yan Li, You Jie Huang, Xin Li Chen, Wei Sheng Wang, Xin Huang, Hui Xiao, Li Qiang Zhu","doi":"10.1007/s11467-024-1401-z","DOIUrl":null,"url":null,"abstract":"<div><p>In order to fulfill the urgent requirements of functional products, circuit integration of different functional devices are commonly utilized. Thus, issues including production cycle, cost, and circuit crosstalk will get serious. Neuromorphic computing aims to break through the bottle neck of von Neumann architectures. Electronic devices with multi-operation modes, especially neuromorphic devices with multi-mode cognitive activities, would provide interesting solutions. Here, pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor was fabricated. With extremely strong proton related interfacial electric-double-layer coupling, the device can operate at low voltage of below 1 V. The device can also operate at multi-operation mode, including bottom gate mode, coplanar gate and pseudo-diode mode. Interestingly, the artificial synapse can work at low voltage of only 1 mV, exhibiting extremely low energy consumption of ∼7.8 fJ, good signal-to-noise ratio of ∼229.6 and sensitivity of ∼23.6 dB. Both inhibitory and excitatory synaptic responses were mimicked on the pseudo-diode, demonstrating spike rate dependent plasticity activities. Remarkably, a linear classifier is proposed on the oxide neuromorphic transistor under synaptic metaplasticity mechanism. These results suggest great potentials of the oxide neuromorphic devices with multi-mode cognitive activities in neuromorphic platform.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-024-1401-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to fulfill the urgent requirements of functional products, circuit integration of different functional devices are commonly utilized. Thus, issues including production cycle, cost, and circuit crosstalk will get serious. Neuromorphic computing aims to break through the bottle neck of von Neumann architectures. Electronic devices with multi-operation modes, especially neuromorphic devices with multi-mode cognitive activities, would provide interesting solutions. Here, pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor was fabricated. With extremely strong proton related interfacial electric-double-layer coupling, the device can operate at low voltage of below 1 V. The device can also operate at multi-operation mode, including bottom gate mode, coplanar gate and pseudo-diode mode. Interestingly, the artificial synapse can work at low voltage of only 1 mV, exhibiting extremely low energy consumption of ∼7.8 fJ, good signal-to-noise ratio of ∼229.6 and sensitivity of ∼23.6 dB. Both inhibitory and excitatory synaptic responses were mimicked on the pseudo-diode, demonstrating spike rate dependent plasticity activities. Remarkably, a linear classifier is proposed on the oxide neuromorphic transistor under synaptic metaplasticity mechanism. These results suggest great potentials of the oxide neuromorphic devices with multi-mode cognitive activities in neuromorphic platform.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.