The benefits, risks and bounds of personalizing the alignment of large language models to individuals

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-04-23 DOI:10.1038/s42256-024-00820-y
Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, Scott A. Hale
{"title":"The benefits, risks and bounds of personalizing the alignment of large language models to individuals","authors":"Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, Scott A. Hale","doi":"10.1038/s42256-024-00820-y","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) undergo ‘alignment’ so that they better reflect human values or preferences, and are safer or more useful. However, alignment is intrinsically difficult because the hundreds of millions of people who now interact with LLMs have different preferences for language and conversational norms, operate under disparate value systems and hold diverse political beliefs. Typically, few developers or researchers dictate alignment norms, risking the exclusion or under-representation of various groups. Personalization is a new frontier in LLM development, whereby models are tailored to individuals. In principle, this could minimize cultural hegemony, enhance usefulness and broaden access. However, unbounded personalization poses risks such as large-scale profiling, privacy infringement, bias reinforcement and exploitation of the vulnerable. Defining the bounds of responsible and socially acceptable personalization is a non-trivial task beset with normative challenges. This article explores ‘personalized alignment’, whereby LLMs adapt to user-specific data, and highlights recent shifts in the LLM ecosystem towards a greater degree of personalization. Our main contribution explores the potential impact of personalized LLMs via a taxonomy of risks and benefits for individuals and society at large. We lastly discuss a key open question: what are appropriate bounds of personalization and who decides? Answering this normative question enables users to benefit from personalized alignment while safeguarding against harmful impacts for individuals and society. Tailoring the alignment of large language models (LLMs) to individuals is a new frontier in generative AI, but unbounded personalization can bring potential harm, such as large-scale profiling, privacy infringement and bias reinforcement. Kirk et al. develop a taxonomy for risks and benefits of personalized LLMs and discuss the need for normative decisions on what are acceptable bounds of personalization.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 4","pages":"383-392"},"PeriodicalIF":18.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00820-y","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) undergo ‘alignment’ so that they better reflect human values or preferences, and are safer or more useful. However, alignment is intrinsically difficult because the hundreds of millions of people who now interact with LLMs have different preferences for language and conversational norms, operate under disparate value systems and hold diverse political beliefs. Typically, few developers or researchers dictate alignment norms, risking the exclusion or under-representation of various groups. Personalization is a new frontier in LLM development, whereby models are tailored to individuals. In principle, this could minimize cultural hegemony, enhance usefulness and broaden access. However, unbounded personalization poses risks such as large-scale profiling, privacy infringement, bias reinforcement and exploitation of the vulnerable. Defining the bounds of responsible and socially acceptable personalization is a non-trivial task beset with normative challenges. This article explores ‘personalized alignment’, whereby LLMs adapt to user-specific data, and highlights recent shifts in the LLM ecosystem towards a greater degree of personalization. Our main contribution explores the potential impact of personalized LLMs via a taxonomy of risks and benefits for individuals and society at large. We lastly discuss a key open question: what are appropriate bounds of personalization and who decides? Answering this normative question enables users to benefit from personalized alignment while safeguarding against harmful impacts for individuals and society. Tailoring the alignment of large language models (LLMs) to individuals is a new frontier in generative AI, but unbounded personalization can bring potential harm, such as large-scale profiling, privacy infringement and bias reinforcement. Kirk et al. develop a taxonomy for risks and benefits of personalized LLMs and discuss the need for normative decisions on what are acceptable bounds of personalization.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据个人情况个性化调整大型语言模型的益处、风险和界限
大型语言模型(LLMs)需要经过 "调整",以便更好地反映人类的价值观或偏好,使其更加安全或有用。然而,对齐本质上是困难的,因为现在与大型语言模型互动的数亿人对语言和对话规范有着不同的偏好,在不同的价值体系下运作,并持有不同的政治信仰。通常情况下,很少有开发人员或研究人员来规定对齐规范,这就有可能导致不同群体被排斥在外或代表性不足。个性化是 LLM 开发的一个新领域,即根据个人情况定制模型。原则上,这可以最大限度地减少文化霸权,提高实用性并扩大使用范围。然而,无限制的个性化也会带来风险,如大规模貌相、侵犯隐私、强化偏见和剥削弱势群体。界定负责任的、社会可接受的个性化界限是一项非同小可的任务,其中充满了规范性挑战。本文探讨了 "个性化对齐",即本地语言工具适应用户特定数据的问题,并重点介绍了本地语言工具生态系统最近向更大程度的个性化转变的情况。我们的主要贡献是通过对个人和整个社会的风险和益处进行分类,探讨了个性化法律信息的潜在影响。最后,我们讨论了一个关键的开放性问题:个性化的适当界限是什么,由谁来决定?回答这个规范性问题可以让用户从个性化调整中受益,同时避免对个人和社会造成有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning A soft skin with self-decoupled three-axis force-sensing taxels Efficient rare event sampling with unsupervised normalizing flows Clinical large language models with misplaced focus Efficient generation of protein pockets with PocketGen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1