Circuit complexity of quantum access models for encoding classical data

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-04-23 DOI:10.1038/s41534-024-00835-8
Xiao-Ming Zhang, Xiao Yuan
{"title":"Circuit complexity of quantum access models for encoding classical data","authors":"Xiao-Ming Zhang, Xiao Yuan","doi":"10.1038/s41534-024-00835-8","DOIUrl":null,"url":null,"abstract":"<p>How to efficiently encode classical data is a fundamental task in quantum computing. While many existing works treat classical data encoding as a black box in oracle-based quantum algorithms, their explicit constructions are crucial for the efficiency of practical algorithm implementations. Here, we unveil the mystery of the classical data encoding black box and study the Clifford + <i>T</i> complexity in constructing several typical quantum access models. For general matrices (even including sparse ones), we prove that sparse-access input models and block-encoding both require nearly linear circuit complexities relative to the matrix dimension. We also give construction protocols achieving near-optimal gate complexities. On the other hand, the construction becomes efficient with respect to the data qubit when the matrix is a linear combination of polynomial terms of efficiently implementable unitaries. As a typical example, we propose improved block-encoding when these unitaries are Pauli strings. Our protocols are built upon improved quantum state preparation and a select oracle for Pauli strings, which hold independent values. Our access model constructions provide considerable flexibility, allowing for tunable ancillary qubit numbers and offering corresponding space-time trade-offs.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"117 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00835-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

How to efficiently encode classical data is a fundamental task in quantum computing. While many existing works treat classical data encoding as a black box in oracle-based quantum algorithms, their explicit constructions are crucial for the efficiency of practical algorithm implementations. Here, we unveil the mystery of the classical data encoding black box and study the Clifford + T complexity in constructing several typical quantum access models. For general matrices (even including sparse ones), we prove that sparse-access input models and block-encoding both require nearly linear circuit complexities relative to the matrix dimension. We also give construction protocols achieving near-optimal gate complexities. On the other hand, the construction becomes efficient with respect to the data qubit when the matrix is a linear combination of polynomial terms of efficiently implementable unitaries. As a typical example, we propose improved block-encoding when these unitaries are Pauli strings. Our protocols are built upon improved quantum state preparation and a select oracle for Pauli strings, which hold independent values. Our access model constructions provide considerable flexibility, allowing for tunable ancillary qubit numbers and offering corresponding space-time trade-offs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经典数据编码量子存取模型的电路复杂性
如何高效地编码经典数据是量子计算的一项基本任务。虽然现有的许多著作都把经典数据编码视为基于甲骨文的量子算法中的黑箱,但它们的明确构造对于实际算法实现的效率至关重要。在这里,我们揭开了经典数据编码黑箱的神秘面纱,并研究了构建几种典型量子访问模型的克利福德 + T 复杂性。对于一般矩阵(甚至包括稀疏矩阵),我们证明稀疏访问输入模型和块编码都需要相对于矩阵维度近乎线性的电路复杂度。我们还给出了实现接近最优门复杂度的构造协议。另一方面,当矩阵是可有效实现的单元的多项式的线性组合时,相对于数据量子比特,构造变得高效。作为一个典型的例子,当这些单元是保利弦时,我们提出了改进的块编码。我们的协议建立在改进的量子态准备和保利弦选择谕令的基础上,保利弦拥有独立的值。我们的访问模型构造具有相当大的灵活性,允许可调的辅助量子比特数,并提供相应的时空权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon Local testability of distance-balanced quantum codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1