Peiyu Yang, Guzhi Bao, Jun Chen, Wei Du, Jinxian Guo, Weiping Zhang
{"title":"Quantum locking of intrinsic spin squeezed state in Earth-field-range magnetometry","authors":"Peiyu Yang, Guzhi Bao, Jun Chen, Wei Du, Jinxian Guo, Weiping Zhang","doi":"10.1038/s41534-025-00971-9","DOIUrl":null,"url":null,"abstract":"<p>In the Earth-field range, the nonlinear Zeeman (NLZ) effect has been a bottleneck limiting the sensitivity and accuracy of atomic magnetometry from physical mechanism. To break this bottleneck, various techniques are introduced to suppress the NLZ effect. Here we revisit the spin dynamics in the Earth-field-range magnetometry with the NLZ effect and identify the existence of the intrinsic spin squeezed state (SSS), generated from the coupling between nuclear and electron spins of each individual atom, with the oscillating squeezing degree and squeezing axis. Such oscillating features of the SSS prevent its direct observation and as well, accessibility to magnetic sensing. To exploit quantum advantage of the intrinsic SSS in the Earth-field-range magnetometry, it’s essential to lock the oscillating SSS to a persistent one. Hence we develop a quantum locking technique to achieve a persistent SSS, benefiting from which the sensitivity of the Earth-field-range magnetometer is quantum-enhanced. This work presents an innovative way turning the drawback of NLZ effect into the quantum advantage and opens a new access to quantum-enhanced magnetometry in the Earth-field range.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"5 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00971-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the Earth-field range, the nonlinear Zeeman (NLZ) effect has been a bottleneck limiting the sensitivity and accuracy of atomic magnetometry from physical mechanism. To break this bottleneck, various techniques are introduced to suppress the NLZ effect. Here we revisit the spin dynamics in the Earth-field-range magnetometry with the NLZ effect and identify the existence of the intrinsic spin squeezed state (SSS), generated from the coupling between nuclear and electron spins of each individual atom, with the oscillating squeezing degree and squeezing axis. Such oscillating features of the SSS prevent its direct observation and as well, accessibility to magnetic sensing. To exploit quantum advantage of the intrinsic SSS in the Earth-field-range magnetometry, it’s essential to lock the oscillating SSS to a persistent one. Hence we develop a quantum locking technique to achieve a persistent SSS, benefiting from which the sensitivity of the Earth-field-range magnetometer is quantum-enhanced. This work presents an innovative way turning the drawback of NLZ effect into the quantum advantage and opens a new access to quantum-enhanced magnetometry in the Earth-field range.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.