{"title":"The structural basis for light harvesting in organisms producing phycobiliproteins","authors":"Donald A Bryant, Christopher J Gisriel","doi":"10.1093/plcell/koae126","DOIUrl":null,"url":null,"abstract":"Cyanobacteria, red algae, and cryptophytes produce two classes of proteins for light-harvesting: water-soluble phycobiliproteins and membrane-intrinsic proteins that bind chlorophylls and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored phycobiliproteins and linker (assembly) proteins. To date, six structural classes of phycobilisomes have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of phycobiliproteins have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped phycobilisomes by cryogenic electron microscopy. Phycobilisomes range in size from about 4.6 to 18 MDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous chlorophyll-binding proteins that can form antenna complexes with Photosystem I and/or Photosystem II. Red and cryptophyte algae also produce chlorophyll-binding proteins associated with Photosystem I but which belong to the chlorophyll a/b-binding (CAB) protein superfamily and which are unrelated to the chlorophyll-binding proteins (CBP) of cyanobacteria. This review describes recent progress in structure determination for phycobilisomes and the chlorophyll proteins of cyanobacteria, red algae, and cryptophytan algae.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria, red algae, and cryptophytes produce two classes of proteins for light-harvesting: water-soluble phycobiliproteins and membrane-intrinsic proteins that bind chlorophylls and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored phycobiliproteins and linker (assembly) proteins. To date, six structural classes of phycobilisomes have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of phycobiliproteins have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped phycobilisomes by cryogenic electron microscopy. Phycobilisomes range in size from about 4.6 to 18 MDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous chlorophyll-binding proteins that can form antenna complexes with Photosystem I and/or Photosystem II. Red and cryptophyte algae also produce chlorophyll-binding proteins associated with Photosystem I but which belong to the chlorophyll a/b-binding (CAB) protein superfamily and which are unrelated to the chlorophyll-binding proteins (CBP) of cyanobacteria. This review describes recent progress in structure determination for phycobilisomes and the chlorophyll proteins of cyanobacteria, red algae, and cryptophytan algae.