Improved-Performance Vehicle’s State Estimator Under Uncertain Model Dynamics

Mohammad Avzayesh;Wasim Al-Masri;Mamoun F. Abdel-Hafez;Mohammad AlShabi
{"title":"Improved-Performance Vehicle’s State Estimator Under Uncertain Model Dynamics","authors":"Mohammad Avzayesh;Wasim Al-Masri;Mamoun F. Abdel-Hafez;Mohammad AlShabi","doi":"10.1109/OJIM.2024.3379386","DOIUrl":null,"url":null,"abstract":"This article proposes an enhanced fusion technique to improve the accuracy of the state estimation of a navigational system. The smooth variable structure filter (SVSF) is examined to estimate the system’s state under model uncertainty. Its combination with the unscented Kalman filter (UKF) to acquire better navigational accuracy while being robust to the system’s modeling uncertainty is investigated. The proposed hybrid method is compared with the extended Kalman filter (EKF), the UKF, and the SVSF. The proposed algorithms fuse an inertial measurement unit (IMU) with the Global Positioning Systems (GPS) measurements to obtain the vehicle’s state. Experimental results are compared to a commercial off-the-shelf (COTS) solution. It is shown that all filtering strategies have similar performance in the absence of large-magnitude noise and model uncertainties. When injecting modeling uncertainties, the performance of the UKF degrades, and that of the EKF goes out of bounds. On the other hand, increasing the covariances of the measurement and dynamics noise sequences causes the path of the SVSF to become nonsmooth and roughly oscillates around the true path. The proposed integrated UK-SVSF algorithm achieves the following objectives: first, using the Kaman-based filter enhances the optimality of the filter to GPS/IMU dynamics and measurements noise. Second, using the UKF reduces the estimation error by eliminating the first-order linearization step. Finally, using the SVSF enhances the estimate’s robustness to model uncertainty. Results reveal that, in the presence of both large-magnitude noise and model uncertainties, the UK-SVSF gives an enhanced estimation performance.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10477539/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes an enhanced fusion technique to improve the accuracy of the state estimation of a navigational system. The smooth variable structure filter (SVSF) is examined to estimate the system’s state under model uncertainty. Its combination with the unscented Kalman filter (UKF) to acquire better navigational accuracy while being robust to the system’s modeling uncertainty is investigated. The proposed hybrid method is compared with the extended Kalman filter (EKF), the UKF, and the SVSF. The proposed algorithms fuse an inertial measurement unit (IMU) with the Global Positioning Systems (GPS) measurements to obtain the vehicle’s state. Experimental results are compared to a commercial off-the-shelf (COTS) solution. It is shown that all filtering strategies have similar performance in the absence of large-magnitude noise and model uncertainties. When injecting modeling uncertainties, the performance of the UKF degrades, and that of the EKF goes out of bounds. On the other hand, increasing the covariances of the measurement and dynamics noise sequences causes the path of the SVSF to become nonsmooth and roughly oscillates around the true path. The proposed integrated UK-SVSF algorithm achieves the following objectives: first, using the Kaman-based filter enhances the optimality of the filter to GPS/IMU dynamics and measurements noise. Second, using the UKF reduces the estimation error by eliminating the first-order linearization step. Finally, using the SVSF enhances the estimate’s robustness to model uncertainty. Results reveal that, in the presence of both large-magnitude noise and model uncertainties, the UK-SVSF gives an enhanced estimation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定模型动态条件下的高性能车辆状态估计器
本文提出了一种增强型融合技术,以提高导航系统状态估计的准确性。文章研究了平滑可变结构滤波器(SVSF),以估计模型不确定情况下的系统状态。研究了它与无特征卡尔曼滤波器(UKF)的结合,以获得更好的导航精度,同时对系统建模的不确定性具有鲁棒性。将所提出的混合方法与扩展卡尔曼滤波器(EKF)、UKF 和 SVSF 进行了比较。提出的算法融合了惯性测量单元(IMU)和全球定位系统(GPS)的测量结果,以获得车辆的状态。实验结果与商用现成(COTS)解决方案进行了比较。结果表明,在没有大范围噪声和模型不确定性的情况下,所有滤波策略都具有相似的性能。当注入模型不确定性时,UKF 的性能会下降,EKF 的性能会超出范围。另一方面,增加测量和动力学噪声序列的协方差会导致 SVSF 的路径变得不平滑,并大致围绕真实路径摆动。所提出的集成式 UK-SVSF 算法实现了以下目标:首先,使用基于卡曼的滤波器增强了滤波器对 GPS/IMU 动态和测量噪声的最优性。其次,使用 UKF 可以消除一阶线性化步骤,从而减少估计误差。最后,使用 SVSF 增强了估计对模型不确定性的鲁棒性。结果表明,在存在大振幅噪声和模型不确定性的情况下,UK-SVSF 可提高估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure Microwave Reflectometry for Online Monitoring of Metal Powder Used in Laser Powder Bed Fusion Additive Manufacturing OJIM 2024 Reviewer List 2024 Index IEEE Open Journal of Instrumentation and Measurement Vol. 3 Ultrahigh-Performance Radio Frequency System-on-Chip Implementation of a Kalman Filter-Based High-Precision Time and Frequency Synchronization for Networked Integrated Sensing and Communication Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1