Multi-Tier Caching for Statistical-QoS Driven Digital Twins Over mURLLC-Based 6G Massive-MIMO Mobile Wireless Networks Using FBC

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Signal Processing Pub Date : 2024-01-01 DOI:10.1109/JSTSP.2024.3377007
Xi Zhang;Qixuan Zhu;H. Vincent Poor
{"title":"Multi-Tier Caching for Statistical-QoS Driven Digital Twins Over mURLLC-Based 6G Massive-MIMO Mobile Wireless Networks Using FBC","authors":"Xi Zhang;Qixuan Zhu;H. Vincent Poor","doi":"10.1109/JSTSP.2024.3377007","DOIUrl":null,"url":null,"abstract":"Digital Twin (DT) has been widely envisioned as a major intelligent application of 6G wireless networks requiring stringent quality-of-service (QoS) for \n<italic>massive ultra-reliable and low latency communications</i>\n (mURLLC) to support efficient interactions between physical and virtual objects. As a key multi-tier computing (MTC) technique of 6G mobile networks, multi-tier caching stores the highly-demanded data at different wireless network tiers to significantly reduce mURLLC-streaming delay and data move. However, how to efficiently cache mURLLC data at different caching tiers in wireless networks and how to support \n<italic>both delay</i>\n and \n<italic>error-rate</i>\n bounded QoS for DT remain challenging problems. To conquer these difficulties, in this paper we propose to integrate multi-tier caching with finite blocklength coding for supporting mURLLC-based DT by developing multi-tier 6G massive-multiple-input-multiple-output (M-MIMO) mobile networks. First, we develop the efficient inter-tier and intra-tier collaborative multi-tier caching mechanisms, where popular DT data items are selectively cached at different wireless network caching tiers including: router tier, M-MIMO base-station (BS)/WiFi-AP tier, and mobile device tier. Second, our proposed inter-tier caching mechanisms maximize the \n<italic>aggregate caching gain</i>\n, in terms of DT-based \n<italic><inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-effective capacity</i>\n, across three caching tiers to support statistical delay and error-rate bounded QoS. Third, we develop the intra-tier caching algorithm to optimize each caching-tier's QoS. Finally, our extensive numerical analyses show our developed schemes' performances-superiorities over existing schemes.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 1","pages":"34-49"},"PeriodicalIF":8.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10472043/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Twin (DT) has been widely envisioned as a major intelligent application of 6G wireless networks requiring stringent quality-of-service (QoS) for massive ultra-reliable and low latency communications (mURLLC) to support efficient interactions between physical and virtual objects. As a key multi-tier computing (MTC) technique of 6G mobile networks, multi-tier caching stores the highly-demanded data at different wireless network tiers to significantly reduce mURLLC-streaming delay and data move. However, how to efficiently cache mURLLC data at different caching tiers in wireless networks and how to support both delay and error-rate bounded QoS for DT remain challenging problems. To conquer these difficulties, in this paper we propose to integrate multi-tier caching with finite blocklength coding for supporting mURLLC-based DT by developing multi-tier 6G massive-multiple-input-multiple-output (M-MIMO) mobile networks. First, we develop the efficient inter-tier and intra-tier collaborative multi-tier caching mechanisms, where popular DT data items are selectively cached at different wireless network caching tiers including: router tier, M-MIMO base-station (BS)/WiFi-AP tier, and mobile device tier. Second, our proposed inter-tier caching mechanisms maximize the aggregate caching gain , in terms of DT-based $\epsilon$-effective capacity , across three caching tiers to support statistical delay and error-rate bounded QoS. Third, we develop the intra-tier caching algorithm to optimize each caching-tier's QoS. Finally, our extensive numerical analyses show our developed schemes' performances-superiorities over existing schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 FBC 在基于 mURLLC 的 6G Massive-MIMO 移动无线网络上为统计-服务质量驱动的数字孪生网络提供多层缓存
数字孪生(Digital Twin,DT)被广泛认为是6G无线网络的一个重要智能应用,它要求大规模超可靠低延迟通信(mURLLC)具有严格的服务质量(QoS),以支持物理对象和虚拟对象之间的高效交互。作为 6G 移动网络的一项关键多层计算(MTC)技术,多层缓存将高需求数据存储在不同的无线网络层,以显著减少 mURLLC 流延迟和数据移动。然而,如何在无线网络中将 mURLLC 数据有效地缓存到不同的缓存层,以及如何支持 DT 的延迟和错误率约束 QoS,仍然是具有挑战性的问题。为了克服这些困难,本文建议通过开发多层 6G 大规模多输入多输出(M-MIMO)移动网络,将多层缓存与有限块长编码相结合,以支持基于 mURLLC 的 DT。首先,我们开发了高效的层间和层内协作多层缓存机制,将流行的 DT 数据项有选择地缓存在不同的无线网络缓存层,包括:路由器层、M-MIMO 基站 (BS)/WiFi-AP 层和移动设备层。其次,我们提出的层间缓存机制可最大限度地提高三个缓存层基于 DT 的 $epsilon$ 有效容量的总缓存增益,以支持统计延迟和错误率约束的 QoS。第三,我们开发了层内缓存算法,以优化每个缓存层的服务质量。最后,大量的数值分析表明,我们开发的方案性能优于现有方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
期刊最新文献
Front Cover Table of Contents IEEE Signal Processing Society Information Introduction to the Special Issue Near-Field Signal Processing: Algorithms, Implementations and Applications IEEE Signal Processing Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1