Pub Date : 2024-11-05DOI: 10.1109/JSTSP.2024.3459324
{"title":"IEEE Signal Processing Society Information","authors":"","doi":"10.1109/JSTSP.2024.3459324","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3459324","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10744618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1109/JSTSP.2024.3459322
{"title":"IEEE Signal Processing Society Information","authors":"","doi":"10.1109/JSTSP.2024.3459322","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3459322","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10744789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1109/JSTSP.2024.3465108
Ahmet M. Elbir;Kumar Vijay Mishra;Özlem Tuğfe Demir;Emil Björnson;Angel Lozano
{"title":"Introduction to the Special Issue Near-Field Signal Processing: Algorithms, Implementations and Applications","authors":"Ahmet M. Elbir;Kumar Vijay Mishra;Özlem Tuğfe Demir;Emil Björnson;Angel Lozano","doi":"10.1109/JSTSP.2024.3465108","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3465108","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10744777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1109/JSTSP.2024.3435465
Ziyi Wang;Zhenyu Liu;Yuan Shen;Andrea Conti;Moe Z. Win
Reconfigurable intelligent surfaces (RISs) are proposed to control complex wireless environments in next-generation networks. In particular, wideband RISs can play a key role in high-accuracy location awareness, which calls for models that consider the frequency-selectivity of metasurfaces. This paper presents a general signal model for wideband systems with RISs and establishes a Fisher information analysis to determine the theoretical limits of wideband localization with RISs. In addition, synthetic RISs are proposed to mitigate the multiplicative fading effect caused by the scattering property of RISs. Special scenarios including complete coupling and complete decoupling are further investigated. Results show that with the proposed models, a wideband RIS with a polynomial phase response per element provides more position information than those with more degrees of freedom (DOFs) in piecewise-constant phase response per element. Furthermore, velocity-induced information allows a dynamic RIS to provide more position information than a static RIS. Additionally, a dynamic RIS can be synthesized through multiple measurements to outperform a large one.
{"title":"Holographic Localization With Synthetic Reconfigurable Intelligent Surfaces","authors":"Ziyi Wang;Zhenyu Liu;Yuan Shen;Andrea Conti;Moe Z. Win","doi":"10.1109/JSTSP.2024.3435465","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3435465","url":null,"abstract":"Reconfigurable intelligent surfaces (RISs) are proposed to control complex wireless environments in next-generation networks. In particular, wideband RISs can play a key role in high-accuracy location awareness, which calls for models that consider the frequency-selectivity of metasurfaces. This paper presents a general signal model for wideband systems with RISs and establishes a Fisher information analysis to determine the theoretical limits of wideband localization with RISs. In addition, synthetic RISs are proposed to mitigate the multiplicative fading effect caused by the scattering property of RISs. Special scenarios including complete coupling and complete decoupling are further investigated. Results show that with the proposed models, a wideband RIS with a polynomial phase response per element provides more position information than those with more degrees of freedom (DOFs) in piecewise-constant phase response per element. Furthermore, velocity-induced information allows a dynamic RIS to provide more position information than a static RIS. Additionally, a dynamic RIS can be synthesized through multiple measurements to outperform a large one.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1109/JSTSP.2024.3424083
{"title":"IEEE Signal Processing Society Information","authors":"","doi":"10.1109/JSTSP.2024.3424083","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3424083","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10665749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1109/JSTSP.2024.3424079
{"title":"IEEE Signal Processing Society Information","authors":"","doi":"10.1109/JSTSP.2024.3424079","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3424079","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10665923","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1109/JSTSP.2024.3445048
Wenbo Ding
{"title":"Editorial Introduction for the Special Issue on Intelligent Robotics: Sensing, Signal Processing and Interaction","authors":"Wenbo Ding","doi":"10.1109/JSTSP.2024.3445048","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3445048","url":null,"abstract":"","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10665936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1109/JSTSP.2024.3442469
Shekhar Kumar Yadav;S. R. M. Prasanna;Nithin V. George
Three-dimensional arrays can localize sources anywhere in the spatial domain without any ambiguity. Among these arrays, the spherical microphone array (SMA) has gained widespread usage in acoustic source localization and beamforming. However, SMAs are bulky, making them undesirable in applications with space and power constraints. To deal with this issue, arrays with microphones placed only in a sector of a sphere have been developed along with various techniques for localizing far-field sources in the spherical sector harmonics (S 2