Pablo Guillermo Carmona Rufo, Anupam Mazumdar, Sougato Bose, Carlos Sabín
{"title":"Digital quantum simulation of gravitational optomechanics with IBM quantum computers","authors":"Pablo Guillermo Carmona Rufo, Anupam Mazumdar, Sougato Bose, Carlos Sabín","doi":"10.1140/epjqt/s40507-024-00242-0","DOIUrl":null,"url":null,"abstract":"<div><p>We showcase the digital quantum simulation of the action of a Hamiltonian that governs the interaction between a quantum mechanical oscillator and an optical field, generating quantum entanglement between them via gravitational effects. This is achieved by making use of a boson-qubit mapping protocol and a digital gate decomposition that allow us to run the simulations in the quantum computers available in the IBM Quantum platform. We present the obtained results for the fidelity of the experiment in two different quantum computers, after applying error mitigation and post-selection techniques. The achieved results correspond to fidelities over 90%, which indicates that we were able to perform a faithful digital quantum simulation of the interaction and therefore of the generation of quantum entanglement by gravitational means in optomechanical systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00242-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00242-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We showcase the digital quantum simulation of the action of a Hamiltonian that governs the interaction between a quantum mechanical oscillator and an optical field, generating quantum entanglement between them via gravitational effects. This is achieved by making use of a boson-qubit mapping protocol and a digital gate decomposition that allow us to run the simulations in the quantum computers available in the IBM Quantum platform. We present the obtained results for the fidelity of the experiment in two different quantum computers, after applying error mitigation and post-selection techniques. The achieved results correspond to fidelities over 90%, which indicates that we were able to perform a faithful digital quantum simulation of the interaction and therefore of the generation of quantum entanglement by gravitational means in optomechanical systems.
我们展示了哈密顿作用的数字量子模拟,该哈密顿支配着量子力学振荡器与光场之间的相互作用,通过引力效应在两者之间产生量子纠缠。这是通过利用玻色子-量子比特映射协议和数字门分解实现的,使我们能够在 IBM 量子平台的量子计算机上运行模拟。我们介绍了在两台不同量子计算机上应用错误缓解和后选技术后获得的实验保真度结果。所取得的结果保真度超过 90%,这表明我们能够对相互作用进行忠实的数字量子模拟,并因此能够在光机械系统中通过引力产生量子纠缠。
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.