Expression of neuronal NO synthase α- and β-isoforms in skeletal muscle of mice

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Journal Pub Date : 2024-05-08 DOI:10.1042/bcj20230458
Baum, Oliver
{"title":"Expression of neuronal NO synthase α- and β-isoforms in skeletal muscle of mice","authors":"Baum, Oliver","doi":"10.1042/bcj20230458","DOIUrl":null,"url":null,"abstract":"Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and β-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-μ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/μ, α/non-μ, β/μ and β/non-μ. Furthermore, immunoblotting suggests that the transition between nNOS α- and β-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS β-isoforms that form homodimers or heterodimers with non-nNOS proteins.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20230458","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and β-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-μ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/μ, α/non-μ, β/μ and β/non-μ. Furthermore, immunoblotting suggests that the transition between nNOS α- and β-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS β-isoforms that form homodimers or heterodimers with non-nNOS proteins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠骨骼肌中神经元 NO 合酶 α 和 β 异构体的表达
人们对骨骼肌中神经元 NO 合酶(nNOS)的主要结构的认识仍然存在冲突,需要进一步澄清。为了阐明 nNOS 同工酶在 mRNA 和蛋白质水平上的表达模式,研究人员对 C57/BL6 小鼠的骨骼肌进行了系统的反转录 (RT)-PCR 分析,并通过定性免疫印迹分析绘制了表位图。通过原生低温聚丙烯酰胺电泳(LT-PAGE)鉴定了 nNOS 异构体形成聚集体的能力。分子分析的重点是股直肌,这是一种 nNOS α 和 β 异构体比例几乎平衡的骨骼肌。来自 RF 肌肉的 RT-PCR 扩增片段显示了外显子-1d mRNA 的独家表达,有的有外显子-μ,有的没有外显子-μ。外显子图谱显示,nNOS剪接变体α/μ、α/non-μ、β/μ和β/non-μ同时表达。此外,免疫印迹表明,nNOS α 和 β 异构体之间的转换位于外显子 3 中。在 LT-PAGE 中,在射频肌肉和胫骨前肌的匀浆中检测到三种与 nNOS 相关的蛋白聚集体:320 kDa 的条带含有 nNOS α-异构体,而 250 和 300 kDa 的条带由 nNOS β-异构体组成,它们与非 nNOS 蛋白形成同二聚体或异二聚体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
期刊最新文献
Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain. Epigenetics and alternative splicing in cancer: old enemies, new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1