{"title":"Flexible UV photodetector based on copper tetraiodogallate (CuGaI4) film","authors":"Haoyu Chen, Bingxu Liu, Jiupeng Cao, Lian Ji, Jiankai Xie, Yuting Shu, Jingjin Dong, Aifei Wang, Fangfang Wang, Feng Yan, Tianshi Qin","doi":"10.1002/flm2.13","DOIUrl":null,"url":null,"abstract":"<p>The Cu-based halide semiconductor CuGaI<sub>4</sub> was prepared by a high-temperature melting method. Optoelectronic characterization and density functional theory calculations of CuGaI<sub>4</sub> reveal a direct bandgap of 2.9 eV. The corresponding UV photodetector (PD) based on CuGaI<sub>4</sub> demonstrates excellent UV response and rapid response time. In addition, a flexible PD based on CuGaI<sub>4</sub> is prepared, which also displays excellent photoresponse characteristics and mechanical stability. This work provides a systematic study of this novel Cu-based halide semiconductor and demonstrates the great potential of CuGaI<sub>4</sub> for future UV optoelectronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 1","pages":"54-58"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.13","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Cu-based halide semiconductor CuGaI4 was prepared by a high-temperature melting method. Optoelectronic characterization and density functional theory calculations of CuGaI4 reveal a direct bandgap of 2.9 eV. The corresponding UV photodetector (PD) based on CuGaI4 demonstrates excellent UV response and rapid response time. In addition, a flexible PD based on CuGaI4 is prepared, which also displays excellent photoresponse characteristics and mechanical stability. This work provides a systematic study of this novel Cu-based halide semiconductor and demonstrates the great potential of CuGaI4 for future UV optoelectronic devices.