Kuo Wang, Jiaojiao Liang, Zhennan Li, Haixin Zhou, Cong Nie, Jiahao Deng, Xiaojie Zhao, Xinyu Peng, Ziye Chen, Zhiyan Peng, Di Huang, Hun Soo Jang, Jaemin Kong, Yingping Zou
Traditionally, squaraine dyes have been studied and employed in biomedical research due to their excellent optical properties, and the molecules are being adopted in different research fields such as organic solar cells. In this study, we investigate correlations between solar cell performance and processing parameters of all-small-molecule bulk heterojunction solar cells comprising squaraine (SQ) as electron donor (D) and non-fullerene small molecules (e.g., ITIC) as electron acceptor (A) with the help of machine learning (ML) and design of experiment (DoE) methods. Among the five predictive ML models tested with the selected parameters, the eXtreme gradient boosting model shows the satisfactory results with quite high coefficient of determination of 0.999 and 0.997 in training and testing sets, respectively. By measuring the contribution of each input variable to solar cell efficiency, four process parameters, that is, the total concentration, the ratio of D/A, the rotational speed of spin coating, and the annealing temperature, are found to be the key features strongly correlated to solar cell efficiency. From contour plots in DoE, the highest solar cell efficiency of approximately 5% can be predicted under the conditions of 15 mg mL−1 in solution concentration, a 1:2 mix ratio of D and A, rotational speeds ranging from 800 to 900 rpm, and annealing temperatures within 100–110°C. Using the suggested parameter conditions, we fabricated solar cells, achieving a quite high efficiency of approximately 4%. Besides the global optimization conditions, we also employ the solvent vapor annealing combination to the thermal annealing to facilitate further mobilization of molecules and more optimized microstructure of bulk heterojunction films, resulting in a further enhancement in solar cell efficiency of more than 20%.
传统上,方碱染料因其优异的光学特性而一直被研究和应用于生物医学研究,而有机太阳能电池等不同研究领域也正在采用这种分子。在本研究中,我们借助机器学习(ML)和实验设计(DoE)方法,研究了由方卡因(SQ)作为电子给体(D)、非富勒烯小分子(如 ITIC)作为电子受体(A)的全小分子体异质结太阳能电池的性能与加工参数之间的相关性。在利用所选参数测试的五个预测性 ML 模型中,eXtreme 梯度提升模型显示出令人满意的结果,在训练集和测试集上的决定系数分别为 0.999 和 0.997,相当高。通过测量各输入变量对太阳能电池效率的贡献,发现总浓度、D/A 比率、旋涂转速和退火温度这四个工艺参数是与太阳能电池效率密切相关的关键特征。根据 DoE 中的等值线图,在溶液浓度为 15 mg mL-1、D 和 A 的混合比为 1:2、旋转速度为 800 至 900 rpm、退火温度为 100 至 110°C 的条件下,太阳能电池的最高效率可达 5%左右。利用建议的参数条件,我们制造出了太阳能电池,实现了相当高的效率,约为 4%。除了全局优化条件外,我们还在热退火的基础上结合使用了溶剂气相退火,以促进分子的进一步迁移,并优化了体异质结薄膜的微观结构,从而使太阳能电池的效率进一步提高了 20% 以上。
{"title":"Design of experiments with the support of machine learning for process parameter optimization of all-small-molecule organic solar cells","authors":"Kuo Wang, Jiaojiao Liang, Zhennan Li, Haixin Zhou, Cong Nie, Jiahao Deng, Xiaojie Zhao, Xinyu Peng, Ziye Chen, Zhiyan Peng, Di Huang, Hun Soo Jang, Jaemin Kong, Yingping Zou","doi":"10.1002/flm2.34","DOIUrl":"https://doi.org/10.1002/flm2.34","url":null,"abstract":"<p>Traditionally, squaraine dyes have been studied and employed in biomedical research due to their excellent optical properties, and the molecules are being adopted in different research fields such as organic solar cells. In this study, we investigate correlations between solar cell performance and processing parameters of all-small-molecule bulk heterojunction solar cells comprising squaraine (SQ) as electron donor (D) and non-fullerene small molecules (e.g., ITIC) as electron acceptor (A) with the help of machine learning (ML) and design of experiment (DoE) methods. Among the five predictive ML models tested with the selected parameters, the eXtreme gradient boosting model shows the satisfactory results with quite high coefficient of determination of 0.999 and 0.997 in training and testing sets, respectively. By measuring the contribution of each input variable to solar cell efficiency, four process parameters, that is, the total concentration, the ratio of D/A, the rotational speed of spin coating, and the annealing temperature, are found to be the key features strongly correlated to solar cell efficiency. From contour plots in DoE, the highest solar cell efficiency of approximately 5% can be predicted under the conditions of 15 mg mL<sup>−1</sup> in solution concentration, a 1:2 mix ratio of D and A, rotational speeds ranging from 800 to 900 rpm, and annealing temperatures within 100–110°C. Using the suggested parameter conditions, we fabricated solar cells, achieving a quite high efficiency of approximately 4%. Besides the global optimization conditions, we also employ the solvent vapor annealing combination to the thermal annealing to facilitate further mobilization of molecules and more optimized microstructure of bulk heterojunction films, resulting in a further enhancement in solar cell efficiency of more than 20%.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"234-247"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.34","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiexin Li, Xinrui Ding, Yuzhi Shi, Jiasheng Li, Zihao Deng, Jiayong Qiu, Jinhui Zhang, Wei Luo, Guanwei Liang, Long Zhao, Yong Tang, Ai Qun Liu, Zongtao Li
Pixelated color convertor plays an immensely important role in next-generation display technologies. However, the inherent randomness of light propagation within the convertor presents a formidable challenge to reconcile the huge contradiction between excitation and outcoupling. Here, we demonstrate a bioinspired photonic waveguide pixelated color convertor (BPW-PCC) to realize directional excitation and outcoupling, which is inspired by an insect visual system. The lens array of BPW-PCC enables a focusing photonic waveguide that guides the excitation light and converges it on colloidal quantum dots; the directional channel provides a splitting photonic waveguide to enhance the outcoupling of photoluminescence light. Consequently, the excitation and outcoupling efficiency can be simultaneously improved at this judiciously designed pixelated color convertor with a thickness of 50 μm. By this strategy, ultrathin BPW-PCCs with 4.4-fold enhanced photoluminescence intensity have been demonstrated in micro-light-emitting diode devices and achieved a record-high luminous efficacy of 1600 lm W−1 mm−1, opening a new avenue for efficient miniaturized displays.
{"title":"Bioinspired ultrathin photonic color convertors for highly efficient micro-light-emitting diodes","authors":"Jiexin Li, Xinrui Ding, Yuzhi Shi, Jiasheng Li, Zihao Deng, Jiayong Qiu, Jinhui Zhang, Wei Luo, Guanwei Liang, Long Zhao, Yong Tang, Ai Qun Liu, Zongtao Li","doi":"10.1002/flm2.33","DOIUrl":"https://doi.org/10.1002/flm2.33","url":null,"abstract":"<p>Pixelated color convertor plays an immensely important role in next-generation display technologies. However, the inherent randomness of light propagation within the convertor presents a formidable challenge to reconcile the huge contradiction between excitation and outcoupling. Here, we demonstrate a bioinspired photonic waveguide pixelated color convertor (BPW-PCC) to realize directional excitation and outcoupling, which is inspired by an insect visual system. The lens array of BPW-PCC enables a focusing photonic waveguide that guides the excitation light and converges it on colloidal quantum dots; the directional channel provides a splitting photonic waveguide to enhance the outcoupling of photoluminescence light. Consequently, the excitation and outcoupling efficiency can be simultaneously improved at this judiciously designed pixelated color convertor with a thickness of 50 μm. By this strategy, ultrathin BPW-PCCs with 4.4-fold enhanced photoluminescence intensity have been demonstrated in micro-light-emitting diode devices and achieved a record-high luminous efficacy of 1600 lm W<sup>−1</sup> mm<sup>−1</sup>, opening a new avenue for efficient miniaturized displays.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"258-268"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Mao, Shuai Zhang, Jinchi Liu, Shuyao Wu, Daliang Liu, Hui Li, Lei Zhang, Yusheng Zhang, Qiong Wu, Tianyi Ma
Thin films with two-dimensional (2D) nanostructures possess good environmental stability, thinner thickness and large surface area, which are widely used as a promising modified electrode material in the field of energy storage, supercapacitors, electrochemical sensors and biosensors. Herein, unique bimetallic ions modified polypyrrole/graphene oxide (PPy/GO) nanosheets, including Co2+-Zr4+/(2-MeIm)x@PPy/GO and Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4), are prepared by using 2-methylimidazolium (2-MeIm) as the linkers between PPy/GO and metal ions. The obtained electrodes constructed by Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4) and Co2+-Zr4+/(2-MeIm)x@PPy/GO exhibit improved capacitor electrochemical properties due to the reversible redox reaction, the large specific surface area and the high theoretical specific capacitance value of the metal ions compared to the unmodified PPy/GO. Especially, the specific capacitance value of Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4) electrode reaches 321.78 F g−1 at a current density of 1 A g−1 and the capacitance retention rate is achieved to 100% in the long cycle charge/discharge test after 10 000 cycles (10 A g−1). It will provide a practical experience for the design and preparation of supercapacitors based on bimetallic ions modified PPy/GO.
{"title":"Bimetallic ions modified 2-methylimidazolium functionalized polypyrrole/graphene oxide for the improved supercapacitor","authors":"Hui Mao, Shuai Zhang, Jinchi Liu, Shuyao Wu, Daliang Liu, Hui Li, Lei Zhang, Yusheng Zhang, Qiong Wu, Tianyi Ma","doi":"10.1002/flm2.32","DOIUrl":"https://doi.org/10.1002/flm2.32","url":null,"abstract":"<p>Thin films with two-dimensional (2D) nanostructures possess good environmental stability, thinner thickness and large surface area, which are widely used as a promising modified electrode material in the field of energy storage, supercapacitors, electrochemical sensors and biosensors. Herein, unique bimetallic ions modified polypyrrole/graphene oxide (PPy/GO) nanosheets, including Co<sup>2+</sup>-Zr<sup>4+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO and Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4), are prepared by using 2-methylimidazolium (2-MeIm) as the linkers between PPy/GO and metal ions. The obtained electrodes constructed by Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4) and Co<sup>2+</sup>-Zr<sup>4+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO exhibit improved capacitor electrochemical properties due to the reversible redox reaction, the large specific surface area and the high theoretical specific capacitance value of the metal ions compared to the unmodified PPy/GO. Especially, the specific capacitance value of Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4) electrode reaches 321.78 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> and the capacitance retention rate is achieved to 100% in the long cycle charge/discharge test after 10 000 cycles (10 A g<sup>−1</sup>). It will provide a practical experience for the design and preparation of supercapacitors based on bimetallic ions modified PPy/GO.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"302-310"},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.32","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nian Liu, Huifang Ma, Maorui Li, Rongrong Qin, Peng Li
Electroconductive hydrogels (ECHs) have been extensively explored as promising flexible materials for bioelectronics because of their tunable conductivity and tissue-like biological and mechanical properties. ECHs can interact intimately with biosystems, transmit physiological signals, and are expected to revolutionize the convergence between organisms and electronics. However, there are still some challenges in utilizing ECHs as flexible materials for bioelectronics, such as mismatched stretchability with tissues, a lack of environmental adaptability, susceptibility to mechanical damage, inferior interface compatibility, and vulnerability to bacterial contamination. This review categorizes these challenges encountered in the bioelectronic applications of ECHs and elaborates on the strategies and theories for improving their performance. Furthermore, we present an overview of the recent advancements in ECHs for bioelectronic applications, specifically focusing on their contributions to healthcare monitoring, treatment of diseases, and human–machine interfaces. The scope of future research on ECHs in bioelectronics is also proposed. Overall, this review offers a comprehensive exposition of difficult issues and potential opportunities for ECHs in bioelectronics, offering valuable insights for the design and fabrication of ECH-based bioelectronic devices.
{"title":"Electroconductive hydrogels for bioelectronics: Challenges and opportunities","authors":"Nian Liu, Huifang Ma, Maorui Li, Rongrong Qin, Peng Li","doi":"10.1002/flm2.31","DOIUrl":"https://doi.org/10.1002/flm2.31","url":null,"abstract":"<p>Electroconductive hydrogels (ECHs) have been extensively explored as promising flexible materials for bioelectronics because of their tunable conductivity and tissue-like biological and mechanical properties. ECHs can interact intimately with biosystems, transmit physiological signals, and are expected to revolutionize the convergence between organisms and electronics. However, there are still some challenges in utilizing ECHs as flexible materials for bioelectronics, such as mismatched stretchability with tissues, a lack of environmental adaptability, susceptibility to mechanical damage, inferior interface compatibility, and vulnerability to bacterial contamination. This review categorizes these challenges encountered in the bioelectronic applications of ECHs and elaborates on the strategies and theories for improving their performance. Furthermore, we present an overview of the recent advancements in ECHs for bioelectronic applications, specifically focusing on their contributions to healthcare monitoring, treatment of diseases, and human–machine interfaces. The scope of future research on ECHs in bioelectronics is also proposed. Overall, this review offers a comprehensive exposition of difficult issues and potential opportunities for ECHs in bioelectronics, offering valuable insights for the design and fabrication of ECH-based bioelectronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"269-301"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.31","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultra-thin (also known as ultra-flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)-free transparent electrodes, the ultra-thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra-thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high-kinetic energy spray-coating method successfully yields a curve-shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum-doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT-based devices on 1.3 μm polyimide substrates and demonstrate ultra-thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g−1, which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm2 device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra-thin OPVs with high efficiency, low cost, superior flexibility, and up-scaling capacity.
超薄(又称超柔性)有机光伏(OPV)是新兴光伏技术的有力竞争者。然而,由于无铟锡氧化物(ITO)透明电极的光学和电学特性不平衡,超薄 OPV 的效率往往低于脆性但更平衡的刚性 ITO 同类产品。在这里,我们设计并制造了一种先进的超薄 OPV,它采用了经过全面优化的银纳米线(AgNWs)透明电极(命名为 AZAT),具有优异的光学、电学和机械性能。具体来说,高动能喷涂方法成功地生成了一层曲线形、紧密连接且分布均匀的银纳米线薄膜,并辅以氧化锌:掺铝氧化锌(ZnO:AZO)封端层,以提高电荷收集能力。同时,通过精确的光学优化提高了电极的透明度。因此,我们在 1.3 μm 聚酰亚胺衬底上植入了基于 AZAT 的器件,并展示了超薄 OPV,其效率达到创纪录的 18.46%,功率密度达到 40.31 W g-1,这是光伏技术的最高值。令人鼓舞的是,AZAT 电极还使 10.0 平方厘米的设备实现了 15.67% 的高效率。这些结果为开发具有高效率、低成本、优越灵活性和升级能力的超薄 OPV 提供了宝贵的启示。
{"title":"Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes","authors":"Xiangjun Zheng, Yiming Wang, Tianyi Chen, Yibo Kong, Xiaoling Wu, Cun Zhou, Qun Luo, Chang-Qi Ma, Lijian Zuo, Minmin Shi, Hongzheng Chen","doi":"10.1002/flm2.30","DOIUrl":"https://doi.org/10.1002/flm2.30","url":null,"abstract":"<p>Ultra-thin (also known as ultra-flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)-free transparent electrodes, the ultra-thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra-thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high-kinetic energy spray-coating method successfully yields a curve-shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum-doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT-based devices on 1.3 μm polyimide substrates and demonstrate ultra-thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g<sup>−1</sup>, which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm<sup>2</sup> device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra-thin OPVs with high efficiency, low cost, superior flexibility, and up-scaling capacity.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"221-233"},"PeriodicalIF":0.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.30","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.
柔性热电发生器(FTEG)利用其将人体热量转化为电能的能力,是为可穿戴电子设备供电的绝佳解决方案。然而,由于材料的热电(TE)效率不足以及设备之间的温度变化极小,它们在可穿戴行业中的应用受到了限制。在这项研究中,我们开发了一种类似乐高积木的可重构 FTEG,它将柔性 TE 芯片、流变液态金属电线和可拉伸基板以机械插件的形式结合在一起。柔性 TE 芯片由 n 型无机 MXene/Bi2Te3 复合薄膜制成,通过热处理进一步增强了其 TE 特性。FTEG 的演示表明,它具有将热量转化为垂直温差(ΔT)的能力,从而在与环境接触的冷端产生大量的ΔT,因此仅 5 个 TE 芯片就能输出 7.1 μW 的功率,ΔT 为 45 K。可重新配置的 FTEG 为可穿戴设备利用低级热量提供了巨大的潜力。
{"title":"Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films","authors":"Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang","doi":"10.1002/flm2.28","DOIUrl":"10.1002/flm2.28","url":null,"abstract":"<p>Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi<sub>2</sub>Te<sub>3</sub> composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (Δ<i>T</i>), leading to a substantial Δ<i>T</i> at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a Δ<i>T</i> of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"248-257"},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.28","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is significant to develop stretchable electronics based on silicon materials for practical applications. Although various stretchable silicon structures have been reported, electronic systems based on them exhibit limited stretchability due to the constraints between them and polymer substrates. Here, an innovative strategy of deformation mismatch is proposed to break the constraints between silicon structures and polymers and effectively reduce the strain concentration in silicon structures. As a result, encapsulated serpentine silicon strips (S-Si strips) achieve unprecedented stretchability, exceeding 120%. The encapsulated S-Si strip also exhibits remarkable mechanical stability and durability, enduring 100 000 cycles of 100% stretch without fracture. The effect of key parameters, including the central angle, thickness, and width of the S-Si strip, on the deformation mismatch is revealed through combing experiments and theoretical analysis, which will guide the rational implementation of the deformation mismatch strategy. Electrical testing showcases the strain-insensitive nature and good electrical stability of encapsulated S-Si strips, benefiting practical applications. This work provides a new paradigm of silicon materials with excellent stretchability and will facilitate the development of stretchable electronics.
{"title":"A deformation mismatch strategy enables over 120% stretchability of encapsulated serpentine silicon strips for stretchable electronics","authors":"Yihao Shi, Bingchang Zhang, Jianzhong Zhao, Jiahao Qin, Ke Bai, Jia Yu, Xiaohong Zhang","doi":"10.1002/flm2.27","DOIUrl":"10.1002/flm2.27","url":null,"abstract":"<p>It is significant to develop stretchable electronics based on silicon materials for practical applications. Although various stretchable silicon structures have been reported, electronic systems based on them exhibit limited stretchability due to the constraints between them and polymer substrates. Here, an innovative strategy of deformation mismatch is proposed to break the constraints between silicon structures and polymers and effectively reduce the strain concentration in silicon structures. As a result, encapsulated serpentine silicon strips (S-Si strips) achieve unprecedented stretchability, exceeding 120%. The encapsulated S-Si strip also exhibits remarkable mechanical stability and durability, enduring 100 000 cycles of 100% stretch without fracture. The effect of key parameters, including the central angle, thickness, and width of the S-Si strip, on the deformation mismatch is revealed through combing experiments and theoretical analysis, which will guide the rational implementation of the deformation mismatch strategy. Electrical testing showcases the strain-insensitive nature and good electrical stability of encapsulated S-Si strips, benefiting practical applications. This work provides a new paradigm of silicon materials with excellent stretchability and will facilitate the development of stretchable electronics.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"150-159"},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, the microelectronics industry has developed rapidly based on the von Neumann architecture and under the guidance of Moore's law. However, as the size of electronic devices approaches the limit and power consumption increases, traditional microelectronic materials and devices are facing more and more challenges. As a new type of semiconductor material, halide perovskites (HPs) have excellent photoelectric characteristics, such as high carrier mobility, controllable band structure, etc., which have been widely used in solar cells, light emitting diodes (LEDs), photodetectors, memristors, and in other fields. Among them, the memristor, as a new type of electronic device, is very promising for in-memory computing with low power consumption by breaking the limit of von Neumann architecture. Especially, HPs-based memristors show outstanding photoelectric response performance, low power consumption, and flexible wearability, allowing them to hold great application potential in logical operation, polymorphic storage, and neuromorphic computing, etc. In this review, we first briefly introduce the basic characteristics and preparation methods of HPs. Secondly, the development history, device structure, and performance parameters of memristors are depicted in detail. Thirdly, the resistance mechanism and application of HPs-based memristors are discussed. Finally, the research status and development prospects of HPs-based memristors are outlined.
{"title":"Principles, fabrication, and applications of halide perovskites-based memristors","authors":"Xiaozhe Cheng, Zhitao Dou, Hong Lian, Zhitao Qin, Hongen Guo, Xifeng Li, Wai-Yeung Wong, Qingchen Dong","doi":"10.1002/flm2.25","DOIUrl":"10.1002/flm2.25","url":null,"abstract":"<p>In recent decades, the microelectronics industry has developed rapidly based on the von Neumann architecture and under the guidance of Moore's law. However, as the size of electronic devices approaches the limit and power consumption increases, traditional microelectronic materials and devices are facing more and more challenges. As a new type of semiconductor material, halide perovskites (HPs) have excellent photoelectric characteristics, such as high carrier mobility, controllable band structure, etc., which have been widely used in solar cells, light emitting diodes (LEDs), photodetectors, memristors, and in other fields. Among them, the memristor, as a new type of electronic device, is very promising for in-memory computing with low power consumption by breaking the limit of von Neumann architecture. Especially, HPs-based memristors show outstanding photoelectric response performance, low power consumption, and flexible wearability, allowing them to hold great application potential in logical operation, polymorphic storage, and neuromorphic computing, etc. In this review, we first briefly introduce the basic characteristics and preparation methods of HPs. Secondly, the development history, device structure, and performance parameters of memristors are depicted in detail. Thirdly, the resistance mechanism and application of HPs-based memristors are discussed. Finally, the research status and development prospects of HPs-based memristors are outlined.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"127-149"},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.25","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covalent organic frameworks (COFs) are porous materials with good crystallinity, highly ordered stacking, tunable channels, and diverse functional groups that have been demonstrated to show great potential applications in flexible electronic devices, including flexible energy storage devices (batteries and supercapacitors), memristors and sensors. Although great research progress on the usage of COFs as active elements in flexible electronics has been witnessed, the summary in this direction is rare. Thus, it is the right time to write a review on COFs-based flexible electronics. In this review, we will first discuss the different synthesis strategies to prepare COF materials. Then, the applications of COFs in flexible electronic devices are summarized. Finally, the future performance improvement and development directions of COFs in the field of flexible electronic devices are briefly outlined. This review could provide basic concepts and some guidelines to stimulate novel applications of COFs in diverse flexible electronic devices.
{"title":"Recent progress in covalent organic frameworks for flexible electronic devices","authors":"Jinghang Wu, Shiwei Zhang, Qianfeng Gu, Qichun Zhang","doi":"10.1002/flm2.26","DOIUrl":"https://doi.org/10.1002/flm2.26","url":null,"abstract":"<p>Covalent organic frameworks (COFs) are porous materials with good crystallinity, highly ordered stacking, tunable channels, and diverse functional groups that have been demonstrated to show great potential applications in flexible electronic devices, including flexible energy storage devices (batteries and supercapacitors), memristors and sensors. Although great research progress on the usage of COFs as active elements in flexible electronics has been witnessed, the summary in this direction is rare. Thus, it is the right time to write a review on COFs-based flexible electronics. In this review, we will first discuss the different synthesis strategies to prepare COF materials. Then, the applications of COFs in flexible electronic devices are summarized. Finally, the future performance improvement and development directions of COFs in the field of flexible electronic devices are briefly outlined. This review could provide basic concepts and some guidelines to stimulate novel applications of COFs in diverse flexible electronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"160-172"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao
Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.
{"title":"Purely organic room temperature phosphorescent materials toward organic light-emitting diodes","authors":"Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao","doi":"10.1002/flm2.23","DOIUrl":"10.1002/flm2.23","url":null,"abstract":"<p>Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"173-192"},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.23","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141339122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}