首页 > 最新文献

FlexMat最新文献

英文 中文
Reconfigurable flexible thermoelectric generators based on all‐inorganic MXene/Bi2Te3 composite films 基于全无机 MXene/Bi2Te3 复合薄膜的可重构柔性热电发生器
Pub Date : 2024-07-11 DOI: 10.1002/flm2.28
Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang
Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego‐like reconfigurable FTEG by combining flexible TE chips, rheological liquid‐metal electrical wiring, and a stretchable substrate in a mechanical plug‐in configuration. The flexible TE chips are constructed from n‐type all‐inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low‐grade heat.
柔性热电发生器(FTEG)利用其将人体热量转化为电能的能力,是为可穿戴电子设备供电的绝佳解决方案。然而,由于材料的热电(TE)效率不足以及设备之间的温度变化极小,它们在可穿戴行业中的应用受到了限制。在这项研究中,我们开发了一种类似乐高积木的可重构 FTEG,它将柔性 TE 芯片、流变液态金属电线和可拉伸基板以机械插件的形式结合在一起。柔性 TE 芯片由 n 型无机 MXene/Bi2Te3 复合薄膜制成,通过热处理进一步增强了其 TE 特性。FTEG 的演示表明,它具有将热量转化为垂直温差(ΔT)的能力,从而在与环境接触的冷端产生大量的ΔT,因此仅 5 个 TE 芯片就能输出 7.1 μW 的功率,ΔT 为 45 K。可重新配置的 FTEG 为可穿戴设备利用低级热量提供了巨大的潜力。
{"title":"Reconfigurable flexible thermoelectric generators based on all‐inorganic MXene/Bi2Te3 composite films","authors":"Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang","doi":"10.1002/flm2.28","DOIUrl":"https://doi.org/10.1002/flm2.28","url":null,"abstract":"Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego‐like reconfigurable FTEG by combining flexible TE chips, rheological liquid‐metal electrical wiring, and a stretchable substrate in a mechanical plug‐in configuration. The flexible TE chips are constructed from n‐type all‐inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low‐grade heat.","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deformation mismatch strategy enables over 120% stretchability of encapsulated serpentine silicon strips for stretchable electronics 变形错配策略使封装蛇形硅带的拉伸性超过 120%,适用于可拉伸电子器件
Pub Date : 2024-07-05 DOI: 10.1002/flm2.27
Yihao Shi, Bingchang Zhang, Jianzhong Zhao, Jiahao Qin, Ke Bai, Jia Yu, Xiaohong Zhang

It is significant to develop stretchable electronics based on silicon materials for practical applications. Although various stretchable silicon structures have been reported, electronic systems based on them exhibit limited stretchability due to the constraints between them and polymer substrates. Here, an innovative strategy of deformation mismatch is proposed to break the constraints between silicon structures and polymers and effectively reduce the strain concentration in silicon structures. As a result, encapsulated serpentine silicon strips (S-Si strips) achieve unprecedented stretchability, exceeding 120%. The encapsulated S-Si strip also exhibits remarkable mechanical stability and durability, enduring 100 000 cycles of 100% stretch without fracture. The effect of key parameters, including the central angle, thickness, and width of the S-Si strip, on the deformation mismatch is revealed through combing experiments and theoretical analysis, which will guide the rational implementation of the deformation mismatch strategy. Electrical testing showcases the strain-insensitive nature and good electrical stability of encapsulated S-Si strips, benefiting practical applications. This work provides a new paradigm of silicon materials with excellent stretchability and will facilitate the development of stretchable electronics.

为实际应用开发基于硅材料的可拉伸电子器件意义重大。虽然已有各种可拉伸硅结构的报道,但由于硅结构与聚合物基底之间的限制,基于硅结构的电子系统表现出有限的可拉伸性。本文提出了一种创新的变形错配策略,以打破硅结构与聚合物之间的限制,并有效降低硅结构中的应变浓度。因此,封装蛇形硅带(S-Si 带)实现了前所未有的拉伸性,超过了 120%。封装蛇形硅带还表现出卓越的机械稳定性和耐久性,可承受 100% 拉伸的 100000 次循环而不会断裂。通过结合实验和理论分析,揭示了关键参数(包括 S-Si 带的中心角、厚度和宽度)对形变错配的影响,这将指导形变错配策略的合理实施。电学测试展示了封装硅-硅带的应变不敏感性和良好的电学稳定性,有利于实际应用。这项工作为具有优异拉伸性的硅材料提供了新的范例,将促进可拉伸电子器件的开发。
{"title":"A deformation mismatch strategy enables over 120% stretchability of encapsulated serpentine silicon strips for stretchable electronics","authors":"Yihao Shi,&nbsp;Bingchang Zhang,&nbsp;Jianzhong Zhao,&nbsp;Jiahao Qin,&nbsp;Ke Bai,&nbsp;Jia Yu,&nbsp;Xiaohong Zhang","doi":"10.1002/flm2.27","DOIUrl":"10.1002/flm2.27","url":null,"abstract":"<p>It is significant to develop stretchable electronics based on silicon materials for practical applications. Although various stretchable silicon structures have been reported, electronic systems based on them exhibit limited stretchability due to the constraints between them and polymer substrates. Here, an innovative strategy of deformation mismatch is proposed to break the constraints between silicon structures and polymers and effectively reduce the strain concentration in silicon structures. As a result, encapsulated serpentine silicon strips (S-Si strips) achieve unprecedented stretchability, exceeding 120%. The encapsulated S-Si strip also exhibits remarkable mechanical stability and durability, enduring 100 000 cycles of 100% stretch without fracture. The effect of key parameters, including the central angle, thickness, and width of the S-Si strip, on the deformation mismatch is revealed through combing experiments and theoretical analysis, which will guide the rational implementation of the deformation mismatch strategy. Electrical testing showcases the strain-insensitive nature and good electrical stability of encapsulated S-Si strips, benefiting practical applications. This work provides a new paradigm of silicon materials with excellent stretchability and will facilitate the development of stretchable electronics.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles, fabrication, and applications of halide perovskites-based memristors 基于卤化物过氧化物的忆阻器的原理、制造和应用
Pub Date : 2024-07-03 DOI: 10.1002/flm2.25
Xiaozhe Cheng, Zhitao Dou, Hong Lian, Zhitao Qin, Hongen Guo, Xifeng Li, Wai-Yeung Wong, Qingchen Dong

In recent decades, the microelectronics industry has developed rapidly based on the von Neumann architecture and under the guidance of Moore's law. However, as the size of electronic devices approaches the limit and power consumption increases, traditional microelectronic materials and devices are facing more and more challenges. As a new type of semiconductor material, halide perovskites (HPs) have excellent photoelectric characteristics, such as high carrier mobility, controllable band structure, etc., which have been widely used in solar cells, light emitting diodes (LEDs), photodetectors, memristors, and in other fields. Among them, the memristor, as a new type of electronic device, is very promising for in-memory computing with low power consumption by breaking the limit of von Neumann architecture. Especially, HPs-based memristors show outstanding photoelectric response performance, low power consumption, and flexible wearability, allowing them to hold great application potential in logical operation, polymorphic storage, and neuromorphic computing, etc. In this review, we first briefly introduce the basic characteristics and preparation methods of HPs. Secondly, the development history, device structure, and performance parameters of memristors are depicted in detail. Thirdly, the resistance mechanism and application of HPs-based memristors are discussed. Finally, the research status and development prospects of HPs-based memristors are outlined.

近几十年来,在冯-诺依曼体系结构和摩尔定律的指导下,微电子工业得到了飞速发展。然而,随着电子器件尺寸接近极限和功耗的增加,传统的微电子材料和器件正面临越来越多的挑战。卤化物包晶(HPs)作为一种新型半导体材料,具有载流子迁移率高、能带结构可控等优异的光电特性,已被广泛应用于太阳能电池、发光二极管(LEDs)、光电探测器、忆阻器等领域。其中,忆阻器作为一种新型电子器件,打破了冯-诺依曼体系结构的限制,在低功耗内存计算领域大有可为。特别是基于HPs的忆阻器表现出优异的光电响应性能、低功耗和灵活的可穿戴性,使其在逻辑运算、多态存储和神经形态计算等方面具有巨大的应用潜力。在这篇综述中,我们首先简要介绍了 HPs 的基本特性和制备方法。其次,详细介绍了忆阻器的发展历程、器件结构和性能参数。第三,讨论了基于 HPs 的忆阻器的电阻机理和应用。最后,概述了基于 HPs 的忆阻器的研究现状和发展前景。
{"title":"Principles, fabrication, and applications of halide perovskites-based memristors","authors":"Xiaozhe Cheng,&nbsp;Zhitao Dou,&nbsp;Hong Lian,&nbsp;Zhitao Qin,&nbsp;Hongen Guo,&nbsp;Xifeng Li,&nbsp;Wai-Yeung Wong,&nbsp;Qingchen Dong","doi":"10.1002/flm2.25","DOIUrl":"10.1002/flm2.25","url":null,"abstract":"<p>In recent decades, the microelectronics industry has developed rapidly based on the von Neumann architecture and under the guidance of Moore's law. However, as the size of electronic devices approaches the limit and power consumption increases, traditional microelectronic materials and devices are facing more and more challenges. As a new type of semiconductor material, halide perovskites (HPs) have excellent photoelectric characteristics, such as high carrier mobility, controllable band structure, etc., which have been widely used in solar cells, light emitting diodes (LEDs), photodetectors, memristors, and in other fields. Among them, the memristor, as a new type of electronic device, is very promising for in-memory computing with low power consumption by breaking the limit of von Neumann architecture. Especially, HPs-based memristors show outstanding photoelectric response performance, low power consumption, and flexible wearability, allowing them to hold great application potential in logical operation, polymorphic storage, and neuromorphic computing, etc. In this review, we first briefly introduce the basic characteristics and preparation methods of HPs. Secondly, the development history, device structure, and performance parameters of memristors are depicted in detail. Thirdly, the resistance mechanism and application of HPs-based memristors are discussed. Finally, the research status and development prospects of HPs-based memristors are outlined.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.25","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in covalent organic frameworks for flexible electronic devices 用于柔性电子器件的共价有机框架的最新进展
Pub Date : 2024-06-24 DOI: 10.1002/flm2.26
Jinghang Wu, Shiwei Zhang, Qianfeng Gu, Qichun Zhang

Covalent organic frameworks (COFs) are porous materials with good crystallinity, highly ordered stacking, tunable channels, and diverse functional groups that have been demonstrated to show great potential applications in flexible electronic devices, including flexible energy storage devices (batteries and supercapacitors), memristors and sensors. Although great research progress on the usage of COFs as active elements in flexible electronics has been witnessed, the summary in this direction is rare. Thus, it is the right time to write a review on COFs-based flexible electronics. In this review, we will first discuss the different synthesis strategies to prepare COF materials. Then, the applications of COFs in flexible electronic devices are summarized. Finally, the future performance improvement and development directions of COFs in the field of flexible electronic devices are briefly outlined. This review could provide basic concepts and some guidelines to stimulate novel applications of COFs in diverse flexible electronic devices.

共价有机框架(COFs)是一种多孔材料,具有良好的结晶性、高度有序的堆积、可调通道和多种功能基团,已被证明在柔性电子设备(包括柔性储能设备(电池和超级电容器)、忆阻器和传感器)中具有巨大的应用潜力。尽管将 COFs 用作柔性电子器件中的有源元件的研究取得了很大进展,但这方面的总结还很少。因此,现在正是撰写基于 COFs 的柔性电子学综述的恰当时机。在本综述中,我们将首先讨论制备 COF 材料的不同合成策略。然后,总结 COFs 在柔性电子器件中的应用。最后,简要概述了 COFs 在柔性电子器件领域的未来性能改进和发展方向。本综述可为激发 COFs 在各种柔性电子器件中的新型应用提供基本概念和一些指导原则。
{"title":"Recent progress in covalent organic frameworks for flexible electronic devices","authors":"Jinghang Wu,&nbsp;Shiwei Zhang,&nbsp;Qianfeng Gu,&nbsp;Qichun Zhang","doi":"10.1002/flm2.26","DOIUrl":"https://doi.org/10.1002/flm2.26","url":null,"abstract":"<p>Covalent organic frameworks (COFs) are porous materials with good crystallinity, highly ordered stacking, tunable channels, and diverse functional groups that have been demonstrated to show great potential applications in flexible electronic devices, including flexible energy storage devices (batteries and supercapacitors), memristors and sensors. Although great research progress on the usage of COFs as active elements in flexible electronics has been witnessed, the summary in this direction is rare. Thus, it is the right time to write a review on COFs-based flexible electronics. In this review, we will first discuss the different synthesis strategies to prepare COF materials. Then, the applications of COFs in flexible electronic devices are summarized. Finally, the future performance improvement and development directions of COFs in the field of flexible electronic devices are briefly outlined. This review could provide basic concepts and some guidelines to stimulate novel applications of COFs in diverse flexible electronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purely organic room temperature phosphorescent materials toward organic light-emitting diodes 面向有机发光二极管的纯有机室温磷光材料
Pub Date : 2024-06-14 DOI: 10.1002/flm2.23
Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao

Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.

纯有机室温磷光(RTP)材料因其理论上 100% 的激子利用率、成本效益和灵活性,在有机发光二极管(OLED)中展现出广阔的应用前景。近年来,随着研究的深入,人们提出了多种发光机理,RTP 材料也取得了重大进展,并有效地应用于有机发光二极管。本文全面回顾了 RTP 材料在 OLED 中的研究进展,并从分子设计策略和光物理性质的角度介绍了一系列高效 RTP 材料的发展。这些结论为解决利用有机 RTP 材料具体推进 OLED 研究的固有挑战绘制了路线图。
{"title":"Purely organic room temperature phosphorescent materials toward organic light-emitting diodes","authors":"Hui Li,&nbsp;Cheng Chen,&nbsp;Zongji Ye,&nbsp;Kai Feng,&nbsp;Jiani Huang,&nbsp;Gaozhan Xie,&nbsp;Ye Tao","doi":"10.1002/flm2.23","DOIUrl":"10.1002/flm2.23","url":null,"abstract":"<p>Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.23","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141339122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of multi-decay pathways and realizing polymer-regulated organic smart luminescent materials 构建多衰变途径,实现聚合物调控的有机智能发光材料
Pub Date : 2024-06-14 DOI: 10.1002/flm2.24
Yuxin Xiao, Zongliang Xie, Mingyao Shen, Hailan Wang, Jiahui Li, Rongjuan Huang, Tao Yu

The construction of multi-decay pathways of smart organic light-emitting materials has drawn intensive research enthusiasm owing to their substantial promise in diverse optoelectronic applications. Nowadays, numerous chemical substances have been refined to extend and enhance their intriguing luminescent properties. Nowadays, plenty of chemicals have been adapted to amplify more interesting luminescent properties. How to utilize an easy way to tune multi-decay pathways resulting in various emissions is still challenging. Here, we present a triphenylamine derivative, TPA3BP, which exhibits a variety of multi-decay pathways in different states and can exhibit thermally activated delayed fluorescence in both the polydimethylsiloxane and crystalline state, but also achieve room temperature phosphorescence by embedding it into the poly (methyl methacrylate) (PMMA) and polyvinyl pyrrolidone matrix. The multi-decay luminescence can be attributed to the dual effect arising from the n-π* transition of TPA3BP and the regulation of molecular transition pathways within the matrix environment. This intriguing phenomenon highlights the combined influence of TPA3BP's electronic transitions and the influence of the polarity and rigidity of the surrounding matrix on the observed characteristics. This advancement has widened the structural possibilities for multi-decay luminescent materials, enabling their targeted synthesis for future applications, such as information encryption and smart anti-counterfeiting.

由于智能有机发光材料在各种光电应用中大有可为,其多衰变途径的构建引起了广泛的研究热情。如今,许多化学物质已被改良,以扩展和增强其引人入胜的发光特性。如今,许多化学物质已被改良以放大更有趣的发光特性。如何利用一种简便的方法来调整导致各种发射的多衰变途径,仍然具有挑战性。在这里,我们展示了一种三苯胺衍生物 TPA3BP,它在不同状态下表现出多种多衰变途径,不仅能在聚二甲基硅氧烷和结晶状态下表现出热激活延迟荧光,还能通过将其嵌入聚甲基丙烯酸甲酯(PMMA)和聚乙烯吡咯烷酮基质而实现室温磷光。这种多重衰减发光现象可归因于 TPA3BP 的 n-π* 转变和基质环境中分子转变途径调节所产生的双重效应。这一有趣的现象凸显了 TPA3BP 的电子转变以及周围基质的极性和刚性对观察到的特征的综合影响。这一进展拓宽了多重衰变发光材料的结构可能性,使其能够有针对性地合成,用于信息加密和智能防伪等未来应用领域。
{"title":"Construction of multi-decay pathways and realizing polymer-regulated organic smart luminescent materials","authors":"Yuxin Xiao,&nbsp;Zongliang Xie,&nbsp;Mingyao Shen,&nbsp;Hailan Wang,&nbsp;Jiahui Li,&nbsp;Rongjuan Huang,&nbsp;Tao Yu","doi":"10.1002/flm2.24","DOIUrl":"10.1002/flm2.24","url":null,"abstract":"<p>The construction of multi-decay pathways of smart organic light-emitting materials has drawn intensive research enthusiasm owing to their substantial promise in diverse optoelectronic applications. Nowadays, numerous chemical substances have been refined to extend and enhance their intriguing luminescent properties. Nowadays, plenty of chemicals have been adapted to amplify more interesting luminescent properties. How to utilize an easy way to tune multi-decay pathways resulting in various emissions is still challenging. Here, we present a triphenylamine derivative, TPA3BP, which exhibits a variety of multi-decay pathways in different states and can exhibit thermally activated delayed fluorescence in both the polydimethylsiloxane and crystalline state, but also achieve room temperature phosphorescence by embedding it into the poly (methyl methacrylate) (PMMA) and polyvinyl pyrrolidone matrix. The multi-decay luminescence can be attributed to the dual effect arising from the <i>n</i>-π* transition of TPA3BP and the regulation of molecular transition pathways within the matrix environment. This intriguing phenomenon highlights the combined influence of TPA3BP's electronic transitions and the influence of the polarity and rigidity of the surrounding matrix on the observed characteristics. This advancement has widened the structural possibilities for multi-decay luminescent materials, enabling their targeted synthesis for future applications, such as information encryption and smart anti-counterfeiting.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.24","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of high-performance, freestanding flexible film masks through photosensitive polyimide for arbitrary surface micropatterns creation 通过光敏聚酰亚胺实现高性能、独立式柔性薄膜掩膜,用于创建任意表面微图案
Pub Date : 2024-06-04 DOI: 10.1002/flm2.18
Xuan Dong, Siew Yin Chan, Ruoqing Zhao, Lei Luo, Manzhang Xu, Jiuwei Gao, Xin Ju, Jing Wu, Dongzhi Chi, Xian Jun Loh, Xuewen Wang

Given the widespread presence of intricate surfaces, the development of electronics has generated a significant demand for surface patterning techniques capable of creating refined or novel patterns. Nevertheless, present surface patterning techniques suffer from complex processes, limited resolution, stringent conditions, and high manufacturing costs. Herein, we present a novel approach for arbitrary surface micropatterning using photosensitive polyimide (PSPI), enabling the in situ fabrication of electrodes without the need for a pattern-transferring process. On this basis, we have implemented a high-performance, freestanding flexible thin-film mask with high optical transparency that facilitates precise alignment of microelectrode patterns with the target material. It also exhibits exceptional mechanical properties suitable for long-term use and high-temperature applications, with a notable glass transition temperature of up to 300°C. The fabricated masks with thicknesses of 5–20 μm are well-suited for high-resolution applications, including those requiring sub-5 μm resolution. Furthermore, the creation of microelectrodes on a variety of surfaces utilizing the fabricated PSPI masks was successfully demonstrated. Our facile method provides a solid foundation for achieving efficient micropatterning for the fabrication of high-performance flexible electronics on complex surfaces.

鉴于复杂表面的广泛存在,电子技术的发展对能够创建精细或新颖图案的表面图案技术产生了巨大需求。然而,目前的表面图案技术存在工艺复杂、分辨率有限、条件苛刻和制造成本高等问题。在此,我们提出了一种使用光敏聚酰亚胺(PSPI)进行任意表面微图案化的新方法,无需图案转移过程即可实现电极的原位制造。在此基础上,我们实现了一种高性能、独立式柔性薄膜掩膜,它具有高光学透明度,便于将微电极图案与目标材料精确对准。它还具有适合长期使用和高温应用的优异机械性能,玻璃化转变温度高达 300°C。制作的掩膜厚度为 5-20 μm,非常适合高分辨率应用,包括要求 5 μm 以下分辨率的应用。此外,利用制作的 PSPI 掩膜在各种表面上创建微电极的工作也已成功完成。我们的简便方法为在复杂表面上实现高效微图案化以制造高性能柔性电子器件奠定了坚实的基础。
{"title":"Implementation of high-performance, freestanding flexible film masks through photosensitive polyimide for arbitrary surface micropatterns creation","authors":"Xuan Dong,&nbsp;Siew Yin Chan,&nbsp;Ruoqing Zhao,&nbsp;Lei Luo,&nbsp;Manzhang Xu,&nbsp;Jiuwei Gao,&nbsp;Xin Ju,&nbsp;Jing Wu,&nbsp;Dongzhi Chi,&nbsp;Xian Jun Loh,&nbsp;Xuewen Wang","doi":"10.1002/flm2.18","DOIUrl":"10.1002/flm2.18","url":null,"abstract":"<p>Given the widespread presence of intricate surfaces, the development of electronics has generated a significant demand for surface patterning techniques capable of creating refined or novel patterns. Nevertheless, present surface patterning techniques suffer from complex processes, limited resolution, stringent conditions, and high manufacturing costs. Herein, we present a novel approach for arbitrary surface micropatterning using photosensitive polyimide (PSPI), enabling the in situ fabrication of electrodes without the need for a pattern-transferring process. On this basis, we have implemented a high-performance, freestanding flexible thin-film mask with high optical transparency that facilitates precise alignment of microelectrode patterns with the target material. It also exhibits exceptional mechanical properties suitable for long-term use and high-temperature applications, with a notable glass transition temperature of up to 300°C. The fabricated masks with thicknesses of 5–20 μm are well-suited for high-resolution applications, including those requiring sub-5 μm resolution. Furthermore, the creation of microelectrodes on a variety of surfaces utilizing the fabricated PSPI masks was successfully demonstrated. Our facile method provides a solid foundation for achieving efficient micropatterning for the fabrication of high-performance flexible electronics on complex surfaces.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.18","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells 具有缺电子醌单元的自掺杂共轭聚合物,用于增强高效有机太阳能电池中的电子传输
Pub Date : 2024-06-04 DOI: 10.1002/flm2.17
Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao

Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.

有机太阳能电池(OSC)作为一种新兴的柔性技术,因其先进的功率转换效率而备受关注。此外,界面材料在优化有源层和电极之间的能级排列方面起着至关重要的作用,从而增强了器件内的载流子萃取并提高了效率。然而,与空穴传输材料相比,目前制造具有优异迁移率的电子传输材料的方法仍然有限。本研究合成了一种由苯并二呋喃二酮(BFDO)衍生的构筑基块,它具有醌共振特性和强大的电子吸收能力。研究制备了两种共轭聚合物,即 PBFDO-F6N 和 PBFDO-F6N-Br,这两种聚合物都表现出良好的电子迁移率和优异的界面修饰能力。对界面层和活性层之间相互作用的全面研究表明,PBFDO-F6N 在受体界面诱导了掺杂。此外,PBFDO-F6N 的高迁移率还有助于在界面上高效提取载流子。因此,将 PBFDO-F6N 用作基于 PM6:BTP-eC9 的 OSC 器件的阴极界面层,可实现 18.11% 的显著效率。此外,即使 PBFDO-F6N 界面厚度为 50 nm,器件效率仍保持在 96% 以上,这表明这种材料在大规模器件制备方面具有巨大潜力。
{"title":"Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells","authors":"Xi Luo,&nbsp;Jiangkai Yu,&nbsp;Haoran Tang,&nbsp;Houji Cai,&nbsp;Wei Xiong,&nbsp;Kai Zhang,&nbsp;Fei Huang,&nbsp;Yong Cao","doi":"10.1002/flm2.17","DOIUrl":"10.1002/flm2.17","url":null,"abstract":"<p>Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.17","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolving photonic authentication with sustainable luminescent smart e-tags 利用可持续发光智能电子标签发展光子认证技术
Pub Date : 2024-05-07 DOI: 10.1002/flm2.16
Lília M. S. Dias, Lianshe Fu, R. F. P. Pereira, Albano N. Carneiro Neto, V. de Zea Bermudez, P. S. André, Rute A. S. Ferreira

Counterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low-cost and sustainable e-tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface-modified carbon dots. A single e-tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge-response pairs, involving a sample size of up to 29 emission spectra in combination with 102 photographs taken with a smartphone, displays a low authentication probability of error (<10−11), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.

假冒伪劣仍然是一个重大威胁,造成经济和安全问题。为解决这一问题,身份验证技术得到了广泛应用。随着物联网的兴起,身份验证至关重要。光子物理不可克隆功能(PUF)提供了独一无二的标识符。我们提出了低成本、可持续的电子标签,由于表面改性碳点可持续油墨的定制纹理化,这种电子标签几乎可以打印在任何表面进行身份验证。单个电子标签可提供随机的磷光(或余辉)图案,通过利用不同的图案、激发能量和时间特性提供多层次的安全性。一项综合案例研究采用了光子挑战-响应对,涉及多达 29 个发射光谱的样本量,结合 102 张智能手机拍摄的照片,显示出较低的验证错误概率(<10-11),这支持了我们的组合方法在开发更强大的光子 PUF 系统方面的潜力。
{"title":"Evolving photonic authentication with sustainable luminescent smart e-tags","authors":"Lília M. S. Dias,&nbsp;Lianshe Fu,&nbsp;R. F. P. Pereira,&nbsp;Albano N. Carneiro Neto,&nbsp;V. de Zea Bermudez,&nbsp;P. S. André,&nbsp;Rute A. S. Ferreira","doi":"10.1002/flm2.16","DOIUrl":"10.1002/flm2.16","url":null,"abstract":"<p>Counterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low-cost and sustainable e-tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface-modified carbon dots. A single e-tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge-response pairs, involving a sample size of up to 2<sup>9</sup> emission spectra in combination with 10<sup>2</sup> photographs taken with a smartphone, displays a low authentication probability of error (&lt;10<sup>−11</sup>), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.16","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible electronic materials and devices toward portable immunoassays 用于便携式免疫测定的柔性电子材料和设备
Pub Date : 2024-04-26 DOI: 10.1002/flm2.12
Lingting Huang, Dianping Tang, Zhen Yang

Biomarker identification is a tried-and-true method that can provide precise biological information for disease diagnosis. Prompt diagnosis, disease progression monitoring, therapy efficacy evaluation, and prognosis assessment of cancers all benefit from sensitive, rapid, and precise measurement of significant biomarkers employing chemical and immunological approaches. The study of biomolecules and immunoassay evaluations can profit greatly from recent advancements in flexible electronic materials and technologies, which provide amazing flexibility, affordability, mobility, and integration. However, an overview of the implementation of portable immunoassays in conjunction with flexible electronic devices is rare to come by. This review focuses on recent breakthroughs in flexible electronic materials and devices for portable biomarker testing, which provides an extensive summary of flexible electrical components and sensing-capable devices, emphasizing their adaptability in the construction of biosensing platforms. These platforms employ various signal transduction systems to record biological affinity recognition events, including pressure, temperature, electrical parameters, colorimetric signals, and other physical features. The challenges for portable, integrated, intelligent, and multifunctional immunoassays based on flexible sensing devices are also discussed. The portable immunoassays with flexible electronics would unlock the potential to transform clinical diagnostics into non-clinical personalized treatments and achieve home-based point-of-care testing for daily monitoring.

生物标志物鉴定是一种屡试不爽的方法,可为疾病诊断提供精确的生物信息。利用化学和免疫学方法对重要的生物标记物进行灵敏、快速和精确的测量,可为癌症的及时诊断、疾病进展监测、疗效评估和预后评估带来益处。柔性电子材料和技术具有惊人的灵活性、经济性、移动性和集成性,其最新进展可使生物分子研究和免疫测定评估受益匪浅。然而,结合柔性电子设备实施便携式免疫测定的综述并不多见。本综述重点介绍了用于便携式生物标记物检测的柔性电子材料和设备的最新突破,对柔性电子元件和传感设备进行了广泛总结,强调了它们在构建生物传感平台方面的适应性。这些平台采用各种信号传导系统来记录生物亲和性识别事件,包括压力、温度、电参数、比色信号和其他物理特征。此外,还讨论了基于柔性传感设备的便携式、集成式、智能化和多功能免疫测定所面临的挑战。具有柔性电子器件的便携式免疫分析仪将释放出将临床诊断转化为非临床个性化治疗的潜力,并实现基于家庭的日常监测点检测。
{"title":"Flexible electronic materials and devices toward portable immunoassays","authors":"Lingting Huang,&nbsp;Dianping Tang,&nbsp;Zhen Yang","doi":"10.1002/flm2.12","DOIUrl":"https://doi.org/10.1002/flm2.12","url":null,"abstract":"<p>Biomarker identification is a tried-and-true method that can provide precise biological information for disease diagnosis. Prompt diagnosis, disease progression monitoring, therapy efficacy evaluation, and prognosis assessment of cancers all benefit from sensitive, rapid, and precise measurement of significant biomarkers employing chemical and immunological approaches. The study of biomolecules and immunoassay evaluations can profit greatly from recent advancements in flexible electronic materials and technologies, which provide amazing flexibility, affordability, mobility, and integration. However, an overview of the implementation of portable immunoassays in conjunction with flexible electronic devices is rare to come by. This review focuses on recent breakthroughs in flexible electronic materials and devices for portable biomarker testing, which provides an extensive summary of flexible electrical components and sensing-capable devices, emphasizing their adaptability in the construction of biosensing platforms. These platforms employ various signal transduction systems to record biological affinity recognition events, including pressure, temperature, electrical parameters, colorimetric signals, and other physical features. The challenges for portable, integrated, intelligent, and multifunctional immunoassays based on flexible sensing devices are also discussed. The portable immunoassays with flexible electronics would unlock the potential to transform clinical diagnostics into non-clinical personalized treatments and achieve home-based point-of-care testing for daily monitoring.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FlexMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1