ReActHE: A homomorphic encryption friendly deep neural network for privacy-preserving biomedical prediction

Q2 Health Professions Smart Health Pub Date : 2024-04-02 DOI:10.1016/j.smhl.2024.100469
Chen Song, Xinghua Shi
{"title":"ReActHE: A homomorphic encryption friendly deep neural network for privacy-preserving biomedical prediction","authors":"Chen Song,&nbsp;Xinghua Shi","doi":"10.1016/j.smhl.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><p>The growing distribution of deep learning models to individuals’ devices on sensitive healthcare data introduces challenging privacy and security problems when computation is being operated on an untrusted server. Homomorphic encryption (HE) is one of the appropriate cryptographic techniques to provide secure machine learning computation by directly computing over encrypted data, so that allows the data owner and model owner to outsource processing of sensitive information to an untrusted server without leaking any information about the data. However, most current HE schemes only support limited arithmetic operations, which significantly hinder their applications to implement a secure deep learning algorithm, especially on the nonlinear activation function of a deep neural network. In this paper, we develop a novel HE-friendly deep neural network, named REsidue ACTivation HE (ReActHE), to implement a precise and privacy-preserving algorithm with a non-approximating HE scheme on the activation function. We consider a residue activation strategy with a scaled power activation function in a deep neural network for HE-friendly nonlinear activation. Moreover, we propose a residue activation network structure to constrain the latent space in the training process to alleviate the optimization difficulty. We comprehensively evaluate the proposed ReActHE method using various biomedical datasets and widely-used image datasets. Our results demonstrate that ReActHE outperforms other alternative solutions to secure machine learning with HE and achieves low approximation errors in classification and regression tasks.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100469"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

The growing distribution of deep learning models to individuals’ devices on sensitive healthcare data introduces challenging privacy and security problems when computation is being operated on an untrusted server. Homomorphic encryption (HE) is one of the appropriate cryptographic techniques to provide secure machine learning computation by directly computing over encrypted data, so that allows the data owner and model owner to outsource processing of sensitive information to an untrusted server without leaking any information about the data. However, most current HE schemes only support limited arithmetic operations, which significantly hinder their applications to implement a secure deep learning algorithm, especially on the nonlinear activation function of a deep neural network. In this paper, we develop a novel HE-friendly deep neural network, named REsidue ACTivation HE (ReActHE), to implement a precise and privacy-preserving algorithm with a non-approximating HE scheme on the activation function. We consider a residue activation strategy with a scaled power activation function in a deep neural network for HE-friendly nonlinear activation. Moreover, we propose a residue activation network structure to constrain the latent space in the training process to alleviate the optimization difficulty. We comprehensively evaluate the proposed ReActHE method using various biomedical datasets and widely-used image datasets. Our results demonstrate that ReActHE outperforms other alternative solutions to secure machine learning with HE and achieves low approximation errors in classification and regression tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ReActHE:用于保护隐私的生物医学预测的同态加密友好型深度神经网络
当计算在不受信任的服务器上进行时,越来越多的深度学习模型被分发到个人设备上的敏感医疗数据中,这就带来了具有挑战性的隐私和安全问题。同态加密(HE)是提供安全机器学习计算的合适加密技术之一,它可以直接对加密数据进行计算,从而允许数据所有者和模型所有者将敏感信息的处理外包给不受信任的服务器,而不会泄露数据的任何信息。然而,目前大多数 HE 方案只支持有限的算术运算,这极大地阻碍了它们在实现安全深度学习算法方面的应用,尤其是在深度神经网络的非线性激活函数方面。在本文中,我们开发了一种新型的对 HE 友好的深度神经网络,命名为 REsidue ACTivation HE(ReActHE),利用激活函数上的非逼近 HE 方案实现精确且保护隐私的算法。我们考虑了在深度神经网络中使用缩放幂激活函数的残差激活策略,以实现对 HE 友好的非线性激活。此外,我们还提出了一种残差激活网络结构,用于在训练过程中约束潜空间,以减轻优化难度。我们利用各种生物医学数据集和广泛使用的图像数据集全面评估了所提出的 ReActHE 方法。结果表明,ReActHE 优于其他使用 HE 进行安全机器学习的替代方案,并且在分类和回归任务中实现了较低的近似误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1