Bidentate ligand application for perovskites passivation

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2024-04-16 DOI:10.1016/j.nexus.2024.100296
David Izuchukwu Ugwu , Jeanet Conradie
{"title":"Bidentate ligand application for perovskites passivation","authors":"David Izuchukwu Ugwu ,&nbsp;Jeanet Conradie","doi":"10.1016/j.nexus.2024.100296","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) are a type of solar cell that has an ABX<sub>3</sub> structure and have found applications in photoluminescence, sensors and actuators, ferroelectric and piezoelectric devices, semiconductors, and supercapacitors. Despite being cheaper and easier to fabricate than the silicon-based solar cells, their use has been hampered by the accompanying surface defects leading to thermal and moisture instability and reduced photovoltaic performances. Bidentate ligands have been reported to improve the photovoltaic properties of perovskites by increasing the short-circuit current density (<em>J</em><sub>sc</sub>), the open-circuit voltage (<em>V</em><sub>oc</sub>), the fill factor (FF), the power conversion efficiency (PCE), and the hysteresis. Passivation of some PSCs has led to certified efficiencies of 26.4% and 33.7% in a single and heterojunction materials, respectively. In addition to the improved photovoltaic performances, bidentate ligand-derived perovskites have been reported to improve operational stability wherein the perovskite retained above 99% of its earliest power conversion efficiency even after 5000 h of constant heating at 80 °C, humidity of 60%, or illumination of 3.0 W. Beside passivation using bidentate ligands, the use of impurities for doping and interface optimization has also been linked to improved perovskite performance. However, with doping, there is an introduction of more uncoordinated metal ions at the perovskite surface during surface optimization. The nicotinimidamide, <em>N,N</em>-diethyldithiocarbamate and the isobutylhydrazine were the most outstanding bidentate ligands used for the passivation of perovskite, showing power conversion efficiency of 25.30, 24.52, and 24.25% respectively. We also observed that the replacement of MA in MAPbI<sub>3</sub> (methylammonium lead iodide) perovskite reported by Mas-Montoya with FA, giving FAPbI<sub>3</sub> (formamidinium lead iodide) perovskite reported by Liu's, group, led to improvement in the efficiency from 16.20 to 24.52% using <em>N,N</em>-diethyldithiocarbamate for passivation. This review x-rayed the role of bidentate ligands in the surface passivation of perovskite solar cells leading to improved stability and photovoltaic performances.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000275/pdfft?md5=0bdcd931b7b6c0e647e758326d8f1caf&pid=1-s2.0-S2772427124000275-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) are a type of solar cell that has an ABX3 structure and have found applications in photoluminescence, sensors and actuators, ferroelectric and piezoelectric devices, semiconductors, and supercapacitors. Despite being cheaper and easier to fabricate than the silicon-based solar cells, their use has been hampered by the accompanying surface defects leading to thermal and moisture instability and reduced photovoltaic performances. Bidentate ligands have been reported to improve the photovoltaic properties of perovskites by increasing the short-circuit current density (Jsc), the open-circuit voltage (Voc), the fill factor (FF), the power conversion efficiency (PCE), and the hysteresis. Passivation of some PSCs has led to certified efficiencies of 26.4% and 33.7% in a single and heterojunction materials, respectively. In addition to the improved photovoltaic performances, bidentate ligand-derived perovskites have been reported to improve operational stability wherein the perovskite retained above 99% of its earliest power conversion efficiency even after 5000 h of constant heating at 80 °C, humidity of 60%, or illumination of 3.0 W. Beside passivation using bidentate ligands, the use of impurities for doping and interface optimization has also been linked to improved perovskite performance. However, with doping, there is an introduction of more uncoordinated metal ions at the perovskite surface during surface optimization. The nicotinimidamide, N,N-diethyldithiocarbamate and the isobutylhydrazine were the most outstanding bidentate ligands used for the passivation of perovskite, showing power conversion efficiency of 25.30, 24.52, and 24.25% respectively. We also observed that the replacement of MA in MAPbI3 (methylammonium lead iodide) perovskite reported by Mas-Montoya with FA, giving FAPbI3 (formamidinium lead iodide) perovskite reported by Liu's, group, led to improvement in the efficiency from 16.20 to 24.52% using N,N-diethyldithiocarbamate for passivation. This review x-rayed the role of bidentate ligands in the surface passivation of perovskite solar cells leading to improved stability and photovoltaic performances.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双齿配体在过氧化物钝化中的应用
Perovskite 太阳能电池(PSCs)是一种具有 ABX3 结构的太阳能电池,可应用于光致发光、传感器和致动器、铁电和压电设备、半导体和超级电容器。尽管与硅基太阳能电池相比,它们的成本更低,更容易制造,但由于伴随的表面缺陷会导致热和湿度的不稳定性以及光伏性能的降低,它们的应用一直受到阻碍。据报道,双齿配体可通过提高短路电流密度(Jsc)、开路电压(Voc)、填充因子(FF)、功率转换效率(PCE)和磁滞来改善包晶石的光伏特性。对一些 PSC 进行钝化处理后,单结和异质结材料的认证效率分别达到了 26.4% 和 33.7%。据报道,除了提高光伏性能外,双叉配体衍生的包晶还能提高运行稳定性,即使在 80 °C 温度、60% 湿度或 3.0 W 光照下持续加热 5000 小时后,包晶仍能保持 99% 以上的最早功率转换效率。然而,在掺杂时,表面优化过程中会在过氧化物表面引入更多的非配位金属离子。烟酰胺、N,N-二乙基二硫代氨基甲酸酯和异丁基肼是用于钝化过氧化物晶的最出色的双齿配体,其功率转换效率分别为 25.30%、24.52% 和 24.25%。我们还观察到,用 FA 取代 Mas-Montoya 报告的 MAPbI3(甲基碘化铵铅)包晶石中的 MA,得到了 Liu 小组报告的 FAPbI3(甲脒碘化铅)包晶石,使用 N,N-二乙基二硫代氨基甲酸盐进行钝化,效率从 16.20% 提高到 24.52%。本综述探讨了双齿配体在过氧化物太阳能电池表面钝化中的作用,从而提高了稳定性和光伏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Production economics and carbon footprint of an integrated timber harvesting operation in the Northeastern US Optimal rule-based energy management and sizing of a grid-connected renewable energy microgrid with hybrid storage using Levy Flight Algorithm pH shift extraction technique for plant proteins: A promising technique for sustainable development Cost breakdown indicates that biochar production from microalgae in Central Europe requires innovative cultivation procedures “Chacco” clay from the Peruvian highlands as a potential adsorbent of heavy metals in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1