Polycyclic norbornene based anion-exchange membranes with high ionic conductivity and chemical stability

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-04-10 DOI:10.1016/j.memsci.2024.122747
Ting Wang , Yu Wang , Wei You
{"title":"Polycyclic norbornene based anion-exchange membranes with high ionic conductivity and chemical stability","authors":"Ting Wang ,&nbsp;Yu Wang ,&nbsp;Wei You","doi":"10.1016/j.memsci.2024.122747","DOIUrl":null,"url":null,"abstract":"<div><p>Polycyclic norbornene derivatives, dicyclopentadiene (DCPD) and tricyclopentadiene (TCPD), have rigid structures with ease of accessibility and high chemical reactivity. After vinylic-addition polymerization, the resultant polynorbornenes (PNBs) possess high thermal stability, excellent mechanical integrity, and chemical inertness due to the retention of the rigid polycyclic norbornene motifs along the polymer backbones. Herein, we first report polycyclic PNBs composing DCPD or TCPD and an alkyl-bromide-substituted norbornene as comonomers to prepare high performance anion-exchange membranes (AEMs). The two double bonds in DCPD/TCPD can be used for vinylic-addition polymerization and thiol-ene click cross-linking reactions, respectively. By comparing with previously reported cross-linked PNB AEMs without polycyclic structures, it is unambiguously confirmed that the involvement of DCPD/TCPD significantly improved the mechanical strength (the stress-at-break of 34 MPa <em>vs</em> 28 MPa), the hydroxide conductivity (212 mS cm<sup>−1</sup> <em>vs</em> 199 mS cm<sup>−1</sup> at 90 °C), and the alkaline stability (93 % <em>vs</em> 81 % conductivity remaining after treating in 1 M KOH at 80 °C for 1200 h). The successful application of the AEMs with excellent durability for over 500 h prove that the involvement of polycyclic structures is a convenient strategy to enhance the performance of aromatic-free AEMs.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824003417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic norbornene derivatives, dicyclopentadiene (DCPD) and tricyclopentadiene (TCPD), have rigid structures with ease of accessibility and high chemical reactivity. After vinylic-addition polymerization, the resultant polynorbornenes (PNBs) possess high thermal stability, excellent mechanical integrity, and chemical inertness due to the retention of the rigid polycyclic norbornene motifs along the polymer backbones. Herein, we first report polycyclic PNBs composing DCPD or TCPD and an alkyl-bromide-substituted norbornene as comonomers to prepare high performance anion-exchange membranes (AEMs). The two double bonds in DCPD/TCPD can be used for vinylic-addition polymerization and thiol-ene click cross-linking reactions, respectively. By comparing with previously reported cross-linked PNB AEMs without polycyclic structures, it is unambiguously confirmed that the involvement of DCPD/TCPD significantly improved the mechanical strength (the stress-at-break of 34 MPa vs 28 MPa), the hydroxide conductivity (212 mS cm−1 vs 199 mS cm−1 at 90 °C), and the alkaline stability (93 % vs 81 % conductivity remaining after treating in 1 M KOH at 80 °C for 1200 h). The successful application of the AEMs with excellent durability for over 500 h prove that the involvement of polycyclic structures is a convenient strategy to enhance the performance of aromatic-free AEMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高离子传导性和化学稳定性的基于多环降冰片烯的阴离子交换膜
多环降冰片烯衍生物--二环戊二烯(DCPD)和三环戊二烯(TCPD)--具有刚性结构,易于加工,化学反应活性高。在乙烯基加成聚合后,由于聚合物骨架上保留了刚性多环降冰片烯基团,因此生成的聚降冰片烯(PNB)具有高热稳定性、优异的机械完整性和化学惰性。在此,我们首次报道了以 DCPD 或 TCPD 和烷基溴代降冰片烯为共聚单体的多环 PNB,用于制备高性能阴离子交换膜(AEM)。DCPD/TCPD 中的两个双键可分别用于乙烯基加成聚合反应和巯基烯点击交联反应。通过与之前报道的不含多环结构的交联 PNB AEM 比较,可以明确证实 DCPD/TCPD 的参与显著提高了 AEM 的机械强度(断裂应力为 34 兆帕对 28 兆帕)、氢氧化物电导率(90 °C 时为 212 mS cm-1 对 199 mS cm-1)和碱性稳定性(在 80 °C 的 1 M KOH 中处理 1200 小时后,电导率保持率为 93% 对 81%)。这种 AEM 的成功应用证明,多环结构是提高不含芳烃的 AEM 性能的一种便捷策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
High-performance polyurea nanofiltration membrane for waste lithium-ion batteries recycling: Leveraging synergistic control of bulk and interfacial monomer diffusion Challenges of forward osmosis desalination processes using hydrogels as draw agents Enhanced selectivity of SPEEK membrane incorporated covalent organic nanosheet crosslinked graphene oxide for vanadium redox flow battery Sustainable approach for landfill leachate treatment through dielectric barrier discharge/ferrate (DBD/Fe(VI)) enhanced nanofiltration In-situ water separation enhanced methyl glycolate oxidation to methyl glyoxylate by catalytic membrane reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1