Membership determination in open clusters using the DBSCAN Clustering Algorithm

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-04-01 DOI:10.1016/j.ascom.2024.100826
M. Raja , P. Hasan , Md. Mahmudunnobe , Md. Saifuddin , S.N. Hasan
{"title":"Membership determination in open clusters using the DBSCAN Clustering Algorithm","authors":"M. Raja ,&nbsp;P. Hasan ,&nbsp;Md. Mahmudunnobe ,&nbsp;Md. Saifuddin ,&nbsp;S.N. Hasan","doi":"10.1016/j.ascom.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we apply the machine learning clustering algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN) to study the membership of stars in twelve open clusters (NGC 2264, NGC 2682, NGC 2244, NGC 3293, NGC 6913, NGC 7142, IC 1805, NGC 6231, NGC 2243, NGC 6451, NGC 6005 and NGC 6583) based on Gaia DR3 Data. This sample of clusters spans a variety of parameters like age, metallicity, distance, extinction and a wide parameter space in proper motions and parallaxes. We obtain reliable cluster members using DBSCAN as faint as <span><math><mrow><mi>G</mi><mo>∼</mo><mn>20</mn></mrow></math></span> mag and also in the outer regions of clusters. With our revised membership list, we plot color-magnitude diagrams and we obtain cluster parameters for our sample using ASteCA and compare it with the catalog values. We also validate our membership sample by spectroscopic data from APOGEE and GALAH for the available data. This paper demonstrates the effectiveness of DBSCAN in membership determination of clusters.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100826"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000416","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the machine learning clustering algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN) to study the membership of stars in twelve open clusters (NGC 2264, NGC 2682, NGC 2244, NGC 3293, NGC 6913, NGC 7142, IC 1805, NGC 6231, NGC 2243, NGC 6451, NGC 6005 and NGC 6583) based on Gaia DR3 Data. This sample of clusters spans a variety of parameters like age, metallicity, distance, extinction and a wide parameter space in proper motions and parallaxes. We obtain reliable cluster members using DBSCAN as faint as G20 mag and also in the outer regions of clusters. With our revised membership list, we plot color-magnitude diagrams and we obtain cluster parameters for our sample using ASteCA and compare it with the catalog values. We also validate our membership sample by spectroscopic data from APOGEE and GALAH for the available data. This paper demonstrates the effectiveness of DBSCAN in membership determination of clusters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 DBSCAN 聚类算法确定开放聚类的成员资格
在本文中,我们基于盖亚DR3数据,应用机器学习聚类算法Density Based Spatial Clustering of Applications with Noise(DBSCAN)来研究12个疏散星团(NGC 2264、NGC 2682、NGC 2244、NGC 3293、NGC 6913、NGC 7142、IC 1805、NGC 6231、NGC 2243、NGC 6451、NGC 6005和NGC 6583)中恒星的成员资格。这些星团样本涵盖了各种参数,如年龄、金属性、距离、消光以及广阔的适当运动和视差参数空间。我们利用 DBSCAN 获得了可靠的星团成员,其暗度可达 G∼20 mag,而且还包括星团的外围区域。利用我们修订的成员列表,我们绘制了色-星等图,并利用ASteCA获得了样本的星团参数,并与星表值进行了比较。我们还通过 APOGEE 和 GALAH 的光谱数据验证了我们的成员样本。本文证明了 DBSCAN 在确定星团成员资格方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
AstroMLab 1: Who wins astronomy jeopardy!? Extended black hole solutions in Rastall theory of gravity Classification of galaxies from image features using best parameter selection by horse herd optimization algorithm (HOA) Accelerating radio astronomy imaging with RICK A numerical solution of Schrödinger equation for the dynamics of early universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1