M. Raja , P. Hasan , Md. Mahmudunnobe , Md. Saifuddin , S.N. Hasan
{"title":"Membership determination in open clusters using the DBSCAN Clustering Algorithm","authors":"M. Raja , P. Hasan , Md. Mahmudunnobe , Md. Saifuddin , S.N. Hasan","doi":"10.1016/j.ascom.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we apply the machine learning clustering algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN) to study the membership of stars in twelve open clusters (NGC 2264, NGC 2682, NGC 2244, NGC 3293, NGC 6913, NGC 7142, IC 1805, NGC 6231, NGC 2243, NGC 6451, NGC 6005 and NGC 6583) based on Gaia DR3 Data. This sample of clusters spans a variety of parameters like age, metallicity, distance, extinction and a wide parameter space in proper motions and parallaxes. We obtain reliable cluster members using DBSCAN as faint as <span><math><mrow><mi>G</mi><mo>∼</mo><mn>20</mn></mrow></math></span> mag and also in the outer regions of clusters. With our revised membership list, we plot color-magnitude diagrams and we obtain cluster parameters for our sample using ASteCA and compare it with the catalog values. We also validate our membership sample by spectroscopic data from APOGEE and GALAH for the available data. This paper demonstrates the effectiveness of DBSCAN in membership determination of clusters.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100826"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000416","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we apply the machine learning clustering algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN) to study the membership of stars in twelve open clusters (NGC 2264, NGC 2682, NGC 2244, NGC 3293, NGC 6913, NGC 7142, IC 1805, NGC 6231, NGC 2243, NGC 6451, NGC 6005 and NGC 6583) based on Gaia DR3 Data. This sample of clusters spans a variety of parameters like age, metallicity, distance, extinction and a wide parameter space in proper motions and parallaxes. We obtain reliable cluster members using DBSCAN as faint as mag and also in the outer regions of clusters. With our revised membership list, we plot color-magnitude diagrams and we obtain cluster parameters for our sample using ASteCA and compare it with the catalog values. We also validate our membership sample by spectroscopic data from APOGEE and GALAH for the available data. This paper demonstrates the effectiveness of DBSCAN in membership determination of clusters.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.