Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-04-25 DOI:10.1126/science.adk1005
Sinika Henschke, Hendrik Nolte, Judith Magoley, Tatjana Kleele, Claus Brandt, A. Christine Hausen, Claudia M. Wunderlich, Corinna A. Bauder, Philipp Aschauer, Suliana Manley, Thomas Langer, F. Thomas Wunderlich, Jens C. Brüning
{"title":"Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver","authors":"Sinika Henschke,&nbsp;Hendrik Nolte,&nbsp;Judith Magoley,&nbsp;Tatjana Kleele,&nbsp;Claus Brandt,&nbsp;A. Christine Hausen,&nbsp;Claudia M. Wunderlich,&nbsp;Corinna A. Bauder,&nbsp;Philipp Aschauer,&nbsp;Suliana Manley,&nbsp;Thomas Langer,&nbsp;F. Thomas Wunderlich,&nbsp;Jens C. Brüning","doi":"10.1126/science.adk1005","DOIUrl":null,"url":null,"abstract":"<div >Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)–dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)–expressing neurons. A nonphosphorylatable MFF<sup>S131G</sup> knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFF<sup>S131G</sup> knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus–liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adk1005","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)–dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)–expressing neurons. A nonphosphorylatable MFFS131G knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFFS131G knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus–liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
食物感知促进肝脏中 MFFS131 的磷酸化和线粒体破碎
肝脏线粒体在适应不断变化的营养状态的新陈代谢过程中发挥着核心作用,但它们在营养供应预期变化时的动态调节问题仍未得到解决。在这里,我们发现感官食物知觉通过蛋白激酶 B/AKT (AKT)依赖的线粒体裂解因子(MFFS131)丝氨酸 131 磷酸化迅速诱导肝脏线粒体破碎。这种反应是通过激活下丘脑表达前绒毛膜促皮质素(POMC)的神经元介导的。在体外,非磷酸化的 MFFS131G 基因敲入突变会减弱 AKT 诱导的线粒体破碎。在体内,MFFS131G 基因敲入小鼠显示出肝脏线粒体动力学的改变,以及胰岛素刺激下抑制肝脏葡萄糖产生的功能受损。因此,快速激活下丘脑-肝脏轴可使线粒体功能适应预期的营养状态变化,从而控制肝脏葡萄糖代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria Mental programming of spatial sequences in working memory in the macaque frontal cortex Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency Cross-species single-cell spatial transcriptomic atlases of the cerebellar cortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1