Robust nonparametric regression based on deep ReLU neural networks

Pub Date : 2024-04-15 DOI:10.1016/j.jspi.2024.106182
Juntong Chen
{"title":"Robust nonparametric regression based on deep ReLU neural networks","authors":"Juntong Chen","doi":"10.1016/j.jspi.2024.106182","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider robust nonparametric regression using deep neural networks with ReLU activation function. While several existing theoretically justified methods are geared towards robustness against identical heavy-tailed noise distributions, the rise of adversarial attacks has emphasized the importance of safeguarding estimation procedures against systematic contamination. We approach this statistical issue by shifting our focus towards estimating conditional distributions. To address it robustly, we introduce a novel estimation procedure based on <span><math><mi>ℓ</mi></math></span>-estimation. Under a mild model assumption, we establish general non-asymptotic risk bounds for the resulting estimators, showcasing their robustness against contamination, outliers, and model misspecification. We then delve into the application of our approach using deep ReLU neural networks. When the model is well-specified and the regression function belongs to an <span><math><mi>α</mi></math></span>-Hölder class, employing <span><math><mi>ℓ</mi></math></span>-type estimation on suitable networks enables the resulting estimators to achieve the minimax optimal rate of convergence. Additionally, we demonstrate that deep <span><math><mi>ℓ</mi></math></span>-type estimators can circumvent the curse of dimensionality by assuming the regression function closely resembles the composition of several Hölder functions. To attain this, new deep fully-connected ReLU neural networks have been designed to approximate this composition class. This approximation result can be of independent interest.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000399/pdfft?md5=79a5bc36ebe3d6024d39b9f8adf1f910&pid=1-s2.0-S0378375824000399-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider robust nonparametric regression using deep neural networks with ReLU activation function. While several existing theoretically justified methods are geared towards robustness against identical heavy-tailed noise distributions, the rise of adversarial attacks has emphasized the importance of safeguarding estimation procedures against systematic contamination. We approach this statistical issue by shifting our focus towards estimating conditional distributions. To address it robustly, we introduce a novel estimation procedure based on -estimation. Under a mild model assumption, we establish general non-asymptotic risk bounds for the resulting estimators, showcasing their robustness against contamination, outliers, and model misspecification. We then delve into the application of our approach using deep ReLU neural networks. When the model is well-specified and the regression function belongs to an α-Hölder class, employing -type estimation on suitable networks enables the resulting estimators to achieve the minimax optimal rate of convergence. Additionally, we demonstrate that deep -type estimators can circumvent the curse of dimensionality by assuming the regression function closely resembles the composition of several Hölder functions. To attain this, new deep fully-connected ReLU neural networks have been designed to approximate this composition class. This approximation result can be of independent interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于深度 ReLU 神经网络的鲁棒非参数回归
在本文中,我们考虑使用具有 ReLU 激活函数的深度神经网络进行稳健的非参数回归。虽然现有的几种理论上合理的方法都是针对相同重尾噪声分布的鲁棒性,但对抗性攻击的兴起强调了保护估计程序免受系统性污染的重要性。我们通过将重点转向条件分布的估计来解决这一统计问题。为了稳健地解决这个问题,我们引入了一种基于 ℓ 估计的新型估计程序。在温和的模型假设下,我们为所得到的估计值建立了一般的非渐近风险边界,展示了它们对污染、异常值和模型错误规范的稳健性。然后,我们利用深度 ReLU 神经网络深入研究了我们方法的应用。当模型指定良好且回归函数属于 α-Hölder 类时,在合适的网络上采用 ℓ 型估计能使得到的估计器达到最小最优收敛率。此外,我们还证明了深度ℓ 型估计器可以通过假设回归函数与多个霍尔德函数的组成非常相似来规避维度诅咒。为了实现这一目标,我们设计了新的深度全连接 ReLU 神经网络来逼近这一组成类别。这一近似结果具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1