Luyao Liu , Pengtao Liu , Jiawei Yu , Gang Feng , Qing Zhang , Jens-Christian Svenning
{"title":"Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia","authors":"Luyao Liu , Pengtao Liu , Jiawei Yu , Gang Feng , Qing Zhang , Jens-Christian Svenning","doi":"10.1016/j.geosus.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>Wind power has been developing rapidly as a key measure to mitigate human-driven global warming. The understanding of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited. In this study, we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats. We explored the impacts of wind farms on land surface temperature (LST) and vegetation net primary productivity (NPP) between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas. The results showed that the area of wind farms increased rapidly from 1.2 km<sup>2</sup> in 1990 to 10,755 km<sup>2</sup> in 2020. Spatially, wind farms are mainly clustered in three aggregation areas in the center. Further, wind farms increased nighttime LST, with a mean value of 0.23 °C, but had minor impacts on the daytime LST. Moreover, wind farms caused a decline in NPP, especially over forest areas, with an average reduction of 12.37 GC/m². Given the impact of wind farms on LST and NPP, we suggest that the development of wind farms should fully consider their direct and potential impacts. This study provides scientific guidance on the spatial pattern of future wind farms.</p></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"5 3","pages":"Pages 319-328"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666683924000075/pdfft?md5=6794cf216eed8340d5a81af742b75138&pid=1-s2.0-S2666683924000075-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000075","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wind power has been developing rapidly as a key measure to mitigate human-driven global warming. The understanding of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited. In this study, we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats. We explored the impacts of wind farms on land surface temperature (LST) and vegetation net primary productivity (NPP) between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas. The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020. Spatially, wind farms are mainly clustered in three aggregation areas in the center. Further, wind farms increased nighttime LST, with a mean value of 0.23 °C, but had minor impacts on the daytime LST. Moreover, wind farms caused a decline in NPP, especially over forest areas, with an average reduction of 12.37 GC/m². Given the impact of wind farms on LST and NPP, we suggest that the development of wind farms should fully consider their direct and potential impacts. This study provides scientific guidance on the spatial pattern of future wind farms.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.