Design and eco-technoeconomic analysis of a natural gas cogeneration energy management center (EMC) with short-term thermal storage

Nina Monteiro , Thomas A. Adams II , James Cotton
{"title":"Design and eco-technoeconomic analysis of a natural gas cogeneration energy management center (EMC) with short-term thermal storage","authors":"Nina Monteiro ,&nbsp;Thomas A. Adams II ,&nbsp;James Cotton","doi":"10.1016/j.cles.2024.100118","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes a non-islanded cogeneration energy management center (EMC) that can be used to displace grid-level natural gas turbine systems and natural gas combustion systems for heat. The design of the proposed EMC included a weighted multi-objective optimization aimed at minimizing: i) natural gas consumption; ii) capital costs; iii) utility costs; and iv) unmet thermal demand. The decision variables consisted of the existence and capacity of the equipment comprising the EMC, including: i) a natural gas boiler; ii) an internal combustion engine that generates heat and electricity; and iii) a hot water thermal storage system. Four resulting candidates EMC designs were then compared with the status-quo (SQ) in an eco-technoeconomic analysis; The SQ draws electricity from the grid and heating for dwellings come from natural gas boilers. Emissions at grid level change which alternative is favored. The findings showed that, for a system that serves 4–5 dense urban city blocks over a 20-year lifetime, the SQ system had cumulative levelized costs of 9.6 million USD for the final consumer, while the levelized costs of the EMC designs ranged from 12.9 to 15.1 million USD. In terms of emissions, the SQ emitted 959 tonnes of CO<sub>2eq</sub> per year, while the EMC system produced around 500 tonnes of CO<sub>2eq</sub> per year depending on the year, yielding a CCA varying between 364 and 653 USD/tonneCO<sub>2eq</sub></p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000128/pdfft?md5=df090e47f2669be2afb8d5229e3dbf76&pid=1-s2.0-S2772783124000128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a non-islanded cogeneration energy management center (EMC) that can be used to displace grid-level natural gas turbine systems and natural gas combustion systems for heat. The design of the proposed EMC included a weighted multi-objective optimization aimed at minimizing: i) natural gas consumption; ii) capital costs; iii) utility costs; and iv) unmet thermal demand. The decision variables consisted of the existence and capacity of the equipment comprising the EMC, including: i) a natural gas boiler; ii) an internal combustion engine that generates heat and electricity; and iii) a hot water thermal storage system. Four resulting candidates EMC designs were then compared with the status-quo (SQ) in an eco-technoeconomic analysis; The SQ draws electricity from the grid and heating for dwellings come from natural gas boilers. Emissions at grid level change which alternative is favored. The findings showed that, for a system that serves 4–5 dense urban city blocks over a 20-year lifetime, the SQ system had cumulative levelized costs of 9.6 million USD for the final consumer, while the levelized costs of the EMC designs ranged from 12.9 to 15.1 million USD. In terms of emissions, the SQ emitted 959 tonnes of CO2eq per year, while the EMC system produced around 500 tonnes of CO2eq per year depending on the year, yielding a CCA varying between 364 and 653 USD/tonneCO2eq

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带短期蓄热的天然气热电联产能源管理中心(EMC)的设计与生态技术经济分析
本研究提出了一种非孤岛热电联产能源管理中心(EMC),可用于取代电网级天然气涡轮机系统和天然气燃烧系统供热。该能源管理中心的设计包括加权多目标优化,旨在最大限度地减少:i) 天然气消耗;ii) 资本成本;iii) 公用事业成本;以及 iv) 未满足的热需求。决策变量包括构成 EMC 的设备的存在和容量,其中包括:i) 天然气锅炉;ii) 产生热量和电力的内燃机;iii) 热水蓄热系统。然后,在生态技术经济分析中将得出的四种候选 EMC 设计与原状(SQ)进行比较;SQ 从电网中获取电力,而住宅的供暖则来自天然气锅炉。电网一级的排放量会改变哪种替代方案更受青睐。研究结果表明,对于一个在 20 年生命周期内为 4-5 个密集城市街区提供服务的系统而言,SQ 系统的最终消费者累计平准化成本为 960 万美元,而 EMC 设计的平准化成本在 1290 万至 1510 万美元之间。在排放方面,SQ 系统每年排放 959 吨 CO2eq,而 EMC 系统每年排放约 500 吨 CO2eq(视年份而定),CCA 在 364 美元/吨 CO2eq 和 653 美元/吨 CO2eq 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1